
Numerical Libraries and Frameworks
(PETSc)

Jed Brown jedbrown@mcs.anl.gov
Argonne National Lab and CU Boulder

ENES Workshop on Exascale Technologies, 2014-03-18



What can libraries offer?

Code reuse
Porting/optimization to new architectures
. . . but only the part of the problem solved by the library

Easy experimentation with different methods
via run-time options (PETSc)
“black box” solvers are not sustainable
preconditioners, linear and nonlinear accelerators, time integrators

Diagnostic and debugging support
Convergence monitors, error estimators, adaptive controllers
Compatibility checks
Eigen-analysis

Communication with algorithm developers
Precise language to describe methods
Performance diagnostics

Flexible coupling algorithms: beyond “first-order” splitting



Library or Framework?

Library

Libraries provide a toolbox

No assumptions about usage

Any selection of libraries
should be usable in
combination

Extensible libraries enable
user to implement/extend

Framework

Rapid development within a
problem class

End-to-end solution provides
guidance and auxiliary tools

Opinionated

Hard to use in combination
with other Frameworks1

PETSc is a Library



Library or Framework?

Library

Libraries provide a toolbox

No assumptions about usage

Any selection of libraries
should be usable in
combination

Extensible libraries enable
user to implement/extend

Framework

Rapid development within a
problem class

End-to-end solution provides
guidance and auxiliary tools

Opinionated

Hard to use in combination
with other Frameworks1

PETSc is a Library



Portable Extensible Toolkit for Scientific computing
Portable

Runs performantly from laptop and iPhone to BG/Q and Titan

Any compiler, any OS

C, C++, Fortran 77 & 90+, Python, MATLAB

Free to everyone: BSD-style license, open development

Philosophy: Everything has a plugin architecture

Vectors, Matrices, Coloring/ordering/partitioning algorithms

Preconditioners, Krylov accelerators, Nonlinear solvers, Time
integrators

Spatial discretizations/topology∗

Example: Third party supplies matrix format and associated
preconditioner, distributes compiled shared library. Application user
loads plugin at runtime, no source code in sight.



Portable Extensible Toolkit for Scientific computing
Computational Scientists and Engineers

Structural mechanics, CFD, Geodynamics, Subsurface flow, Reactor
engineering, Fusion
Research (many countries, many agencies) and industry (oil and
gas, aerospace, ABAQUS)

Algorithm Developers (iterative methods and preconditioning)
Example: Ghysels’ pipelined Krylov methods

Package Developers
SLEPc, TAO, Libmesh, MOOSE, FEniCS, Deal.II, etc

Funding
Department of Energy (SciDAC, ASCR, collaborations)
National Science Foundation (CIG and others)

Active development team with long-term commitment
Hundreds of tutorial-style examples
Hyperlinked manual, examples, and manual pages for all routines
Lists: petsc-users@mcs.anl.gov, petsc-dev@mcs.anl.gov
Support from petsc-maint@mcs.anl.gov

petsc-users@mcs.anl.gov
petsc-dev@mcs.anl.gov
petsc-maint@mcs.anl.gov


Solvers in climate

“Pressure” solves for semi-implicit methods
Depends on separation between fastest wave and dynamics

Time integration for atmospheric column physics
Currently swamped with splitting error
Stiff, positivity constraints, non-smoothness (freezing)

Sea ice
Fast elastic wave speed (vp ≈ 3km s−1)
Damped EVP model not converged at 120 subcycles, nor at 1200
(Lemieux at al 2012)

Land ice (Stokes and hydrostatic models with slippery bed)
PETSc: PISM (UAF, PIK), BISICLES (LBL, Chombo), ISSM (NASA)

Improved stability for symplectic integration
Accelerated spin-up (e.g., deep ocean)

Need to model unresolved-in-time processes



c/o Peter Caldwell (LLNL)

Models calibrated for “efficient” time step
No longer solving the PDEs we write down
Expensive to recalibrate when discretization changes
Calibration eats up a big chunk of the IPCC policy timeline



Sea Ice

(ρhu)t +ρhf k×u︸ ︷︷ ︸
Coriolis

− τ︸︷︷︸
water/air

+ ρgh∇Hd︸ ︷︷ ︸
surface gradient

−∇ · (ρhu⊗u︸ ︷︷ ︸
convection

− σ︸︷︷︸
viscoplastic

) = 0

σ = 2ηε̇ +
[
(ζ −η) tr ε̇−P/2

]
1

mildly nonsymmetric due to Coriolis (quasi-diagonal) and
convection (small compared to viscous stresses)

Nonlinear multigrid is less synchronous

Method Nonlinear its/stage Linear its/stage V-cycles

Newton-Krylov MG 6 30.44 30.44
FAS Newton/BJacobi/SOR 18.33 — 18.33

Additive Runge-Kutta IMEX, error-based adaptivity, solver rtol 10−8

Preliminary tests to 4096 cores of BG/Q and 64 fine-grid
elements/process, less than 0.1 seconds/time step.



IMEX time integration in PETSc
Additive Runge-Kutta IMEX methods

G(t,x , ẋ) = F(t,x)

Jα = αGẋ +Gx

User provides:
FormRHSFunction(ts,t,x,F,void *ctx);
FormIFunction(ts,t,x,ẋ,G,void *ctx);
FormIJacobian(ts,t,x,ẋ,α,J,Jp,mstr,void *ctx);

Can have L-stable DIRK for stiff part G, SSP explicit part, etc.
Orders 2 through 5, embedded error estimates
Dense output, hot starts for Newton
More accurate methods if G is linear, also Rosenbrock-W
Can use preconditioner from classical “semi-implicit” methods
FAS nonlinear solves supported
Extensible adaptive controllers, can change order within a family
Easy to register new methods: TSARKIMEXRegister()

Single step interface so user can have own time loop
Same interface for Extrapolation IMEX, LMS IMEX (in development)



The Great Solver Schism: Monolithic or Split?

Monolithic

Direct solvers

Coupled Schwarz

Coupled Neumann-Neumann
(need unassembled matrices)

Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

Physics-split Schwarz
(based on relaxation)

Physics-split Schur
(based on factorization)

approximate commutators
SIMPLE, PCD, LSC
segregated smoothers
Augmented Lagrangian
“parabolization” for stiff
waves

X Need to understand global
coupling strengths

Preferred data structures depend on which method is used.
Interplay with geometric multigrid.



Multi-physics coupling in PETSc

Momentum Pressure

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting



Multi-physics coupling in PETSc

Momentum PressureStokes

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting



Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting



Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting



Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

Boundary Layer

Ocean

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting



Splitting for Multiphysics[
A B
C D

][
x
y

]
=

[
f
g

]
Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative][

A
D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

][
A
C D

]−1
)

Gauss-Seidel inspired, works when fields are loosely coupled
Factorization: -pc_fieldsplit_type schur[

A B
S

]−1[
1

CA−1 1

]−1

, S = D−CA−1B

robust (exact factorization), can often drop lower block
how to precondition S which is usually dense?

interpret as differential operators, use approximate commutators

“Composable Linear Solvers for Multiphysics” ISPDC 2012



Eigen-analysis plugin for solver design
Hydrostatic ice flow (nonlinear rheology and slip conditions)

−∇

[
η

(
4ux +2vy uy + vx uz

uy + vx 2ux +4vy vz

)]
+ρg∇s = 0, (1)

Many solvers converge easily with no-slip/frozen bed, more difficult
for slippery bed (ISMIP HOM test C)
Geometric MG is good: λ ∈ [0.805,1] (SISC 2013)

(a) λ0 = 0.0268 (b) λ1 = 0.0409



Implicit Runge-Kutta for advection

Table: Total number of iterations (communications or accesses of J) to solve
linear advection to t = 1 on a 1024-point grid using point-block Jacobi
preconditioning of implicit Runge-Kutta matrix. The relative algebraic solver
tolerance is 10−8.

Family Stages Order Iterations

Crank-Nicolson/Gauss 1 2 3627
Gauss 2 4 2560
Gauss 4 8 1735
Gauss 8 16 1442

Naive centered-difference discretization



A case for run-time configuration

Simple build process

Complete test suite without recompilation
Cleaner provenance

Only need run-time configuration
No recompiles, only one binary to keep track of
Consistency checks in one place

Simplified analysis/uncertainty quantification
More algorithms accessible

More automated calibration

Interface granularity is key to performance



Outlook

PETSc: flexible, extensible, unintrusive
http://mcs.anl.gov/petsc

Verification (converging the equations) encourages mathematicians
Climate model components should become more library-like

Remove assumptions about environment
Improved modularity
Interfaces for configuration/calibration
Remove global variables (Fortran module variables)

Tools need to make hard problems possible
Already many tools to make easy problems elegant
Ease of extending (versus DSLs/compilers)

Strong-scaling necessity: ruthlessly shorten critical path
2× increase in resolution requires at least 2× more steps
At fixed turn-around time, need twice as many steps/second
Algorithmic optimality is crucial

http://mcs.anl.gov/petsc

