
High-performance matrix-free
operator application and preconditioning

Jed Brown (ANL and CU) jedbrown@mcs.anl.gov
Dave May (ETH Zürich) dave.may@erdw.ethz.ch

Matt Knepley (UChicago) knepley@ci.uchicago.edu

Download this poster from http://59A2.org/files/201405-MatrixFree.pdf

DON’T ASSEMBLE

The purpose of a solver is to solve equations. Assembly is a necessary evil only for those
legacy algorithms that depend on assembled sparse matrices. The comfortable abstraction
from a bygone era is now a performance bottleneck with teeth on both ends. Ignoring the
time and memory cost to assemble a matrix, it can take longer to compute a residual using
an assembled operator than to solve up to discretization error with a fast matrix-free method.

SPARSE MATRICES ARE BAD FOR HARDWARE

Once assembled, matrices suffer from low arithmetic intensity, performing less than 1/4 flop
for each byte of memory loaded into cache.

Table 1: Bandwidth and compute balance for modern hardware.

Processor STREAM (GB/s) Peak (GF/s) Balance (F/B)
E5-2697v2 12-core 45 230 5.2
BG/Q 16-core 26 205 7.9
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6

A lower-memory representation using more flops would use hardware more efficiently.

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

Figure 1: Cost per dof to apply an assembled matrix vs matrix-free tensor product for Qk discretization in 3D. The
operator defined as Newton linearization of nonlinear material model, stored at quadrature points. Unassembled
uses hardware more efficiently and is asymptotically better for high polynomial order and for large block size b.

Coefficients often have structure imparted by a material model. For example, a scalar
nonlinear diffusion operator −∇ ·

[
κ
(1

2 |∇u|2
)
,∇u

]
has Newton linearization

−∇ ·
[
(κ1 + κ′∇u⊗∇u)∇w

]
so it is sufficient to store the 4 values {κ,

√
±κ′∇u} so long as

κ′ does not change sign [1].

10× SPEEDUP FOR Q2 ELEMENTS (STOKES OR ELASTICITY)

We know analytically (Figure 1) that unassembled wins for sufficiently high order, but what
are the constants for a practical implementation? We consider operator application for a
variable-viscosity Stokes problem on Q2-isoparametrically mapped grids.

Table 2: Memory and compute demands per element for different operator application methods. Arithmetic
intensity is reported as flops/byte, counting adds, multiplies, and division (rare) all as 1 flop. “Tensor” is a
matrix-free implementation that uses the tensor product structure present on the reference element. “Tensor C”
absorbs the metric terms into a tensor-valued coefficient. Average time (milliseconds) and GF/s is reported for
(parallel) operator application on 8 nodes of Edison (3686 GF/s peak).

Operator flops Pessimal cache Perfect cache Time GF/s
bytes F/B bytes F/B (ms)

Assembled 9216 — — 37248 0.247 42 113
Matrix-free 53622 2376 22.5 1008 53 22 651
Tensor 15228 2376 6.4 1008 15 4.2 1072
Tensor C 14214 5832 2.4 4920 2.9 — —

pessimal cache Each Q2 element must be retrieved independently from DRAM.
perfect cache Each dof must be brought into cache only once.

CACHE VERSUS VECTORIZATION

Performance is limited by memory bandwidth (often with many memory streams), cache
reuse, and vectorization. Vectorization across elements does not require cross-lane
operations, but increases working set size relative to intra-element vectorization.
Intra-element vectorization performs well at high order (usually Q3 and higher), but the
optimizations are more sensitive to polynomial order and number of fields. Current trends of
longer vector registers and more hardware threads per core (e.g., Xeon Phi, BG/Q, GPUs)
effectively reduce the amount of cache available per vector lane. To realize high
performance on such architectures, we either need rich cross-lane vector instructions (and
compilers capable of using them) or cache sizes commensurate with the number of vector
lanes made available.
Cache and prefetch streams can be shared between hardware threads by interleaving
thread responsibility, but a work-partition in FEM is not a dof-partition, so this technique
causes overlapping writes. Writes can be managed by coloring, partitioning with duplication
of interface points (to be summed later), or atomics/locking. Coloring has poor memory
locality and the “cache-friendly” interleaved ordering is a pessimal partition (causing
memory bloat for duplication and frequent conflicted writes for atomics/locking).

MATRIX-FREE OPERATOR APPLICATION

Discretize −∇
(
κ∇ · u

)
, yielding

Au =
∑

e∈Elements

ET
e DT

x Λ(ωκ)DxEeu (1)

The physical gradient matrix Dx = {Di|i ∈ {x, y, z}} is an 81× 27 matrix for Q2 elements in 3D
using 33-point Gauss quadrature. In most finite-element implementations, the precomputed
reference gradient matrix Dξ is mapped to physical space via the block-diagonal operation
Dx = Λ(∇xξ)Dξ. This is wasteful; it is less expensive to rearrange as

Au =
∑

e∈Elements

ET
e DT

ξ Λ
(

(∇xξ)T(ωκ)(∇xξ)
)
DξEeu. (2)

where ∇xξ = (∇ξx)−1 is computed at quadrature points from the coordinate gradients. In
Table 2, “Matrix-free” implements Equation 1 in the traditional way, “Tensor” implements
Equation 2 using

Dξ = {D̂⊗ B̂⊗ B̂, B̂⊗ D̂⊗ B̂, B̂⊗ B̂⊗ D̂} (3)

where D̂ and B̂ are the 3× 3 differentiation and basis evaluation matrices for one dimension,
and “Tensor C” stores the tensor (∇xξ)T(ωκ)(∇xξ) at quadrature points, trading storage for
explicit handling of metric terms. Tensor representations are standard for spectral element
methods with collocated quadrature, but are rare for low-order FE with accurate quadrature.

ASSEMBLY-FREE PRECONDITIONING

Fast operator application is nearly useless without effective preconditioning. Fortunately [2],
multigrid methods with polynomial smoothing are effective for many elliptic problems. The
end-to-end performance and memory benefit of matrix-free operator application is mostly
realized on the finest level. For most applications, there is little penalty to using existing
matrix-based methods on coarse grids, even when not carefully optimized. pTatin3D is a
lithosphere dynamics package that simulates thermodynamics and other processes in
visco-plastic quasi-incompressible materials using a material-point method to track
post-failure composition. A Pdisc

1 pressure space is necessary for local conservation and to
accurately represent the hydrostatic mode in the free-surface flows, thus a Q2 velocity space
is used to maintain uniform inf-sup stability. Solving the Newton step for the nonlinear
Stokes problem is the dominant cost, and is achieved using either block-triangular
preconditioners (Table 3) or Schur-complement reduction.

Table 3: pTatin3D efficiency for different problem and partition sizes on Edison.

Operator Cores Grid El/core Solve/core Op/core
El/s GF/s kEl/s

Assembled 192 643 1265 46 0.9 33
Matrix-free 192 643 1265 69 2.6 62
Tensor 192 643 1265 128 2.4 323
Matrix-free 1536 963 576 47 2.2 60
Tensor 1536 963 576 72 2.2 252
Tensor 12288 1923 576 26 1.1 166

For smooth problems, full multigrid is the method of choice. HPGMG-FE
(https://hpgmg.org) solves an elliptic problem using Q2 elements on deformed meshes,
reaching discretization error with one F-cycle using 3,1 Chebyshev smoothing.
Convergence thus requires 5 fine-grid operator applications, for a total of about 6 work units.
With the efficiency in Table 2, we see that the entire solve can be less expensive than a
single residual evaluation using a pre-assembled matrix.

Figure 2: HPGMG-FE FMG performance as a function of per-node problem size on 128 nodes of Edison (Cray
XC-30; up to 23% of peak) versus 512 nodes of Vesta (Blue Gene/Q; up to 6% of peak).

OUTLOOK

Cache versus vectorization is fundamental: tradeoffs vary with element order and numbers
of degrees of freedom. Research in robust matrix-free multigrid techniques are needed.

REFERENCES

Jed Brown.
Efficient nonlinear solvers for nodal high-order finite elements in 3D.
Journal of Scientific Computing, 45:48–63, 2010.

M. F. Adams, M. Brezina, J. J. Hu, and R. S Tuminaro.
Parallel multigrid smoothing: polynomial versus Gauss–Seidel.
J. Comp. Phys., 188(2):593–610, 2003.

This work was supported by the Department of Energy Office of Advanced Scientific Computing Research.

http://59A2.org/files/201405-MatrixFree.pdf
https://hpgmg.org

