
Opportunities for reducing
communication and improving
adaptivity in nonlinear multigrid

methods

Jed Brown jedbrown@mcs.anl.gov (ANL and CU Boulder)
Mark Adams (LBL), Matt Knepley (UChicago)

UC Denver Computational Colloquium, 2014-09-15

This talk: http://59A2.org/files/20140915-UCDenver.pdf

http://59A2.org/files/20140915-UCDenver.pdf

Plan: ruthlessly eliminate communication

Eliminate, not “aggregate and amortize”

Why?

Local recovery despite global coupling
Tolerance for high-frequency load imbalance

From irregular computation or hardware error correction

More scope for dynamic load balance

Requirements

Must retain optimal convergence with good constants

Flexible, robust, and debuggable

Multigrid Preliminaries

Multigrid is an O(n) method for solving algebraic problems by defining
a hierarchy of scale. A multigrid method is constructed from:

1 a series of discretizations
coarser approximations of the original problem
constructed algebraically or geometrically

2 intergrid transfer operators
residual restriction IH

h (fine to coarse)
state restriction ÎH

h (fine to coarse)
partial state interpolation Ih

H (coarse to fine, ‘prolongation’)
state reconstruction Ih

H (coarse to fine)

3 Smoothers (S)
correct the high frequency error components
Richardson, Jacobi, Gauss-Seidel, etc.
Gauss-Seidel-Newton or optimization methods

τ formulation of Full Approximation Scheme (FAS)
classical formulation: “coarse grid accelerates fine grid↘↗
τ formulation: “fine grid feeds back into coarse grid”↗↘
To solve Nu = f , recursively apply

pre-smooth ũh← Sh
pre(uh

0 , f
h)

solve coarse problem for uH NHuH = IH
h f h︸︷︷︸
f H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

correction and post-smooth uh← Sh
post

(
ũh + Ih

H(uH − ÎH
h ũh), f h

)
IH
h residual restriction ÎH

h solution restriction
Ih
H solution interpolation f H = IH

h f h restricted forcing
{Sh

pre,S
h
post} smoothing operations on the fine grid

At convergence, uH∗ = ÎH
h uh∗ solves the τ-corrected coarse grid

equation NHuH = f H + τH
h , thus τH

h is the “fine grid feedback” that
makes the coarse grid equation accurate.
τH

h is local and need only be recomputed where it becomes stale.
Interpretation by Achi Brandt in 1977, many tricks followed

Model problem: p-Laplacian with slip boundary
conditions

2-dimensional model problem for power-law fluid cross-section

−∇·
(
|∇u|p−2

∇u
)
− f = 0, 1≤ p≤ ∞

Singular or degenerate when ∇u = 0

Regularized variant

−∇·(η∇u)− f = 0

η(γ) = (ε
2 + γ)

p−2
2 γ(u) =

1
2
|∇u|2

Friction boundary condition on one side of domain

∇u ·n + A(x) |u|q−1 u = 0

Model problem: p-Laplacian with slip boundary
conditions

p = 1.3 and q = 0.2, checkerboard coefficients {10−2,1}
Friction coefficient A = 0 in center, 1 at corners

Model problem: p-Laplacian with slip boundary
conditions

p = 1.3 and q = 0.2, checkerboard coefficients {10−2,1}
Friction coefficient A = 0 in center, 1 at corners

Model problem: p-Laplacian with slip boundary
conditions

p = 1.3 and q = 0.2, checkerboard coefficients {10−2,1}
Friction coefficient A = 0 in center, 1 at corners

Model problem: p-Laplacian with slip boundary
conditions

p = 1.3 and q = 0.2, checkerboard coefficients {10−2,1}
Friction coefficient A = 0 in center, 1 at corners

Model problem: p-Laplacian with slip boundary
conditions

p = 1.3 and q = 0.2, checkerboard coefficients {10−2,1}
Friction coefficient A = 0 in center, 1 at corners

Model problem: p-Laplacian with slip boundary
conditions

p = 1.3 and q = 0.2, checkerboard coefficients {10−2,1}
Friction coefficient A = 0 in center, 1 at corners

τ corrections

Plane strain elasticity, E = 1000,ν = 0.4 inclusions in
E = 1,ν = 0.2 material, coarsen by 32.
Solve initial problem everywhere and compute
τH

h = AH ÎH
h uh− IH

h Ahuh

Change boundary conditions and solve FAS coarse problem

NH úH = IH
h f́ h︸︷︷︸
f́ H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

Prolong, post-smooth, compute error eh = úh− (Nh)−1 f́ h

Coarse grid with τ is nearly 10× better accuracy

τ corrections

Plane strain elasticity, E = 1000,ν = 0.4 inclusions in
E = 1,ν = 0.2 material, coarsen by 32.
Solve initial problem everywhere and compute
τH

h = AH ÎH
h uh− IH

h Ahuh

Change boundary conditions and solve FAS coarse problem

NH úH = IH
h f́ h︸︷︷︸
f́ H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

Prolong, post-smooth, compute error eh = úh− (Nh)−1 f́ h

Coarse grid with τ is nearly 10× better accuracy

τ adaptivity: an idea for heterogeneous media

Applications with localized nonlinearities
Subduction, rifting, rupture/fault dynamics
Carbon fiber, biological tissues, fracture

Adaptive methods fail for heterogeneous media
Rocks are rough, solutions are not “smooth”
Cannot build accurate coarse space without scale separation

τ adaptivity
Fine-grid work needed everywhere at first
Then τ becomes accurate in nearly-linear regions
Only visit fine grids in “interesting” places: active nonlinearity, drastic
change of solution

Comparison to nonlinear domain decomposition

ASPIN (Additive Schwarz preconditioned inexact Newton)

Cai and Keyes (2003)
More local iterations in strongly nonlinear regions
Each nonlinear iteration only propagates information locally
Many real nonlinearities are activated by long-range forces

locking in granular media (gravel, granola)
binding in steel fittings, crack propagation

Two-stage algorithm has different load balancing
Nonlinear subdomain solves
Global linear solve

τ adaptivity
Minimum effort to communicate long-range information
Nonlinearity sees effects as accurate as with global fine-grid
feedback
Fine-grid work always proportional to “interesting” changes

Nonlinear and matrix-free smoothing
matrix-based smoothers require global linearization
nonlinearity often more efficiently resolved locally
nonlinear additive or multiplicative Schwarz
nonlinear/matrix-free is good if

C =
(cost to evaluate residual at one “point”) ·N

(cost of global residual)
∼ 1

finite difference: C < 2
finite volume: C ∼ 2, depends on reconstruction
finite element: C ∼ number of vertices per cell

larger block smoothers help reduce C
additive correction (Jacobi/Chebyshev/multi-stage)

global evaluation, as good as C = 1
but, need to assemble corrector/scaling
need spectral estimates or wave speeds

Low communication MG

red arrows can be removed by
τ-FAS with overlap

blue arrows can also be removed,
but then algebraic convergence
stalls when discretization error is
reached

no simple way to check that
discretization error is obtained

if fine grid state is not stored, use
compatible relaxation to complete
prolongation P

“Segmental refinement” by Achi
Brandt (1977)

2-process case by Brandt and
Diskin (1994)

Segmental refinement: no horizontal communication
27-point second-order stencil, manufactured analytic solution
5 SR levels: 163 cells/process local coarse grid
Overlap = Base + (L− `)Increment

Implementation requires even number of cells—round down.

FMG with V (2,2) cycles

Table: ‖eSR‖∞
/‖eFMG‖∞

Base
Increment 1 2 3

1 1.59 2.34 1.00
2 1.00 1.00 1.00
3 1.00 1.00 1.00

16 128 1024 8192 65536
0

5

10

15

20

25

cores (Edison)

T
im

e

Solve times: Laplacian, u=(x
4
 − L

2
 x

2
), L=(2,1,1) (8 solves)

1 F−cycle w/ V(2,2), 128
3
 cells/core, 8 solves − non−redundant CGS

1 F−cycle w/ V(2,2), 128
3
 cells/core, 8 solves − SR, non−redundant CGS

V(2,2) cycles, 128
3
 cells, rtol=10.

−4
, 8 solves, non−redundant CGS

1 F−cycle w/ V(2,2), N=32/core, 512 solves − redundant CGS
1 F−cycle w/ V(2,2), N=32/core, 512 solves − non−redundant CGS
1 F−cycle w/ V(2,2), N=32/core, 512 solves − SR, non−redundant CGS

Reducing memory bandwidth

Sweep through “coarse” grid with moving window
Zoom in on new slab, construct fine grid “window” in-cache
Interpolate to new fine grid, apply pipelined smoother (s-step)
Compute residual, accumulate restriction of state and residual into
coarse grid, expire slab from window

Arithmetic intensity of sweeping visit
Assume 3D cell-centered, 7-point stencil

14 flops/cell for second order interpolation

≥ 15 flops/cell for fine-grid residual or point smoother

2 flops/cell to enforce coarse-grid compatibility

2 flops/cell for plane restriction

assume coarse grid points are reused in cache

Fused visit reads uH and writes ÎH
h uh and IH

h rh

Arithmetic Intensity

interp︷︸︸︷
15 +

compatible relaxation︷ ︸︸ ︷
2 · (15 + 2) +

smooth︷︸︸︷
2 ·15 +

residual︷︸︸︷
15 +

restrict︷︸︸︷
2

3 ·sizeof(scalar)/ 23︸︷︷︸
coarsening

& 30 (1)

Still & 10 with non-compressible fine-grid forcing

Regularity
Accuracy of recovery depends on operator regularity

Even with regularity, we can only converge up to discretization
error, unless we add a consistent fine-grid residual evaluation
Visit fine grid with some overlap, but patches do not agree exactly
in overlap
Need decay length for high-frequency error components (those that
restrict to zero) that is bounded with respect to grid size
Required overlap J is proportional to the number of cells to cover
decay length
Can enrich coarse space along boundary, but causes loss of
coarse-grid sparsity
Brandt and Diskin (1994) has two-grid LFA showing J . 2 is
sufficient for Laplacian
With L levels, overlap J(k) on level k ,

2J(k)≥ s(L− k + 1)

where s is the smoothness order of the solution or the
discretization order (whichever is smaller)

Basic resilience strategy

control

essential coarse

ephemeral

program n = 0
control

essential

coarse

storage

control

essential

restored n = 0
control

essential

ephemeral

recovered n = N

MPI/BLCR

n = 1,2, . . . ,N

restart
failed
ranks FMG

recovery

n = 1,2, . . . ,N

malloc
at n = 0

control contains program stack, solver configuration, etc.

essential program state that cannot be easily reconstructed:
time-dependent solution, current optimization/bifurcation
iterate

ephemeral easily recovered structures: assembled matrices,
preconditioners, residuals, Runge-Kutta stage solutions

Essential state at time/optimization step n is inherently globally
coupled to step n−1 (otherwise we could use an explicit method)

Coarse level checkpoints are orders of magnitude smaller, but allow
rapid recovery of essential state

FMG recovery needs only nearest neighbors

Multiscale compression and recovery using τ form

`fine

`cp + 1

`cp

.

`cp

`cp + 1

`fine

CP

R
es

tr
ic

tSolve F(un;bn) = 0

next solve

bn+1(un,bn)bn

CP

CR CR

`fine

CR

`fineτ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

FMG Recovery

checkpoint converged coarse state
recover using FMG anchored at `cp + 1
needs only `cp neighbor points
τ correction is local

Normal multigrid cycles visit all levels moving from n→ n + 1

FMG recovery only accesses levels finer than `CP

Lightweight checkpointing for transient adjoint computation

Postprocessing applications, e.g., in-situ visualization at high
temporal resolution in part of the domain

First-order cost model for FAS resilience
Extend first-order locality-unaware model of Young (1974):

tW time to write a heavy fine-grid checkpointed state
tR time to read back lost state
R fraction of forward simulation needed for recomputation

from a saved state
P the heavy checkpoint interval
M mean time to failure

Neglect cost of I/O for lightweight coarse-grid checkpoints

Overhead = 1−AppUtilization =
tW
P︸︷︷︸

writing

+
tR
M︸︷︷︸

reading after failure

+
RP
2M︸︷︷︸

recomputation

Minimized for a heavy checkpointing interval P =
√

2MtW/R

Overhead∗ =
√

2tWR/M + tR/M

where the first term is always larger than the second. Conventional
checkpointing schemes store only fine-grid state, thus R = 1 (recovery
costs the same as initial computation).

Other uses

Transient adjoints
Adjoint model runs backward-in-time, needs state from solution of
forward model
Status quo: hierarchical checkpointing
Memory-constrained and requires computing forward model multiple
times
If forward model is stiff, each step has global dependence
Compression via τ-FAS accelerates recomputation, can be local

Visualization and analysis
Targeted visualization in small part of domain
Interesting features emergent so can’t predict where to look

Outlook on τ-FAS adaptivity and compression

Benefits of AMR without fine-scale smoothness

Coarse-centric restructuring is a major interface change
Nonlinear smoothers (and discretizations)

Smooth in neighborhood of “interesting” fine-scale features
Which discretizations can provide efficient matrix-free smoothers?
Does there exist an efficient smoother based on element Neumann
problems?

Dynamic load balancing
Reliability of error estimates for refreshing τ

We want a coarse indicator for whether τ needs to change

Worthwhile for resilience and to better use hardware

	-adaptivity and multigrid compression
	Reducing communication and memory bandwidth

