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Intro

I work on PETSc, a popular linear and nonlinear solvers library

Some users need fastest time to solution at strong-scaling limit

Others fill memory with a problem for PETSc
Sparse matrices are a dead end for memory bandwidth reasons

but heavily embraced by legacy code and enable algebraic multigrid

We need to restructure algorithms, but how?

What are the fundamental long-term bottlenecks?
Worrisome trends

1 Fine-grained parallelism without commensurate increase in caches
2 Emphasizing vectorization over cache reuse
3 High instruction latency to be covered by hardware threads
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Hardware Arithmetic Intensity
Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor Bandwidth (GB/s) Peak (GF/s) Balance (F/B)

E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
Blue Gene/Q node 29.3 205 7
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6

Haswell-EP (estimate) 60 660 11
KNL (estimate) 100 (DRAM) 3000 30



How much parallelism out of how much cache?

Processor v width threads F/inst latency L1D L1D/#par

Nehalem 2 1 2 5 32 KiB 1638 B
Sandy Bridge 4 2 2 5 32 KiB 819 B
Haswell 4 2 4 5 32 KiB 410 B
BG/P 2 1 2 6 32 KiB 1365 B
BG/Q 4 4 2 6 32 KiB 682 B
KNC 8 4 4 5 32 KiB 205 B
Tesla K20 32 * 2 10 64 KiB 102 B

Most “fast” algorithms do about O(n) flops on n data

DGEMM and friends do O(n3/2) flops on n data

Exploitable parallelism limited by cache and register load/store



Story time: 27pt stencils instruction-limited for BG/P

rolling 2-step kernel extended to 27-point stencil
2×3 unroll-and-jam used exactly 32 registers
jam width limited by number of registers, barely covers ILP
200-entry jammed stream fits in L1

reuse in two directions for most problem sizes

Malas, Ahmadia, Brown, Gunnels, Keyes (IJHPCA 2012)



Fine-grained parallelism in SpMM

Enumerate all scalar products contributing to row of product, Ĉ
Implemented using scan and gather
Radix sort contributions to each row (two calls to sort)
Contract row: reduce_by_key
c/o Steve Dalton (2013 Givens Fellow, now at NVidia)



CUSP Performance summary

New CUSP SpMM is faster than CUSPARSE for all test matrices.

Sorting optimization faster except for very irregular graph.



Memory overhead from expansion

Figure: Scalar Poisson: Expansion factor nnz(Ĉ)/nnz(A), contraction
nnz(Ĉ)/nnz(C)

3D has much higher variability by row

For elasticity, expansion factor is larger by 3x (for 3D)
Implementation could batch to limit total memory usage

more kernel launches



Finite element: assembled versus unassembled
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Arithmetic intensity for Qp elements
< 1

4 (assembled), ≈ 10 (unassembled), ≈ 4 to 8 (hardware)
store Jacobian information at Quass quadrature points
70% of peak for Q3 on Nehalem - vectorization within an element
30% of peak for Q2 on Sandy Bridge and Haswell - vectorization
across elements



pTatin3d: Lithospheric Dynamics
Heterogeneous, visco-plastic Stokes with particles for material
composition/chemistry, geometric MG with coarse AMG

May, Brown, Le Pourhiet (SC14)

Viscous operator application for Q2-Pdisc
1

“Tensor”: matrix-free implementation using tensor product structure
on the reference element

“Tensor C” absorbs metric term into stored tensor-valued coefficient

Performance on 8 nodes of Edison (3686 GF/s peak)

Operator flops Pessimal cache Perfect cache Time GF/s
bytes F/B bytes F/B (ms)

Assembled 9216 — — 37248 0.247 42 113
Matrix-free 53622 2376 22.5 1008 53 22 651
Tensor 15228 2376 6.4 1008 15 4.2 1072
Tensor C 14214 5832 2.4 4920 2.9 — —



Cache versus vectorization

Fundamental trade-off

Hardware gives us less cache per vector lane

Intra-element vectorization is complicated and über-custom

Coordinate transformation is 27 ·9 ·sizeof(double)= 1944
bytes/element.

Vectorize over 4 or 8 elements, perhaps hardware threads

L1 cache is not this big: repeated spills in tensor contraction

This is a very simple problem



HPGMG: a new benchmarking proposal

https://hpgmg.org, hpgmg-forum@hpgmg.org mailing list

SC14 BoF: Wednesday, Nov 19, 12:15pm to 1:15pm

Mark Adams, Sam Williams (finite-volume), myself (finite-element),
John Shalf, Brian Van Straalen, Erich Strohmeier, Rich Vuduc

Implementations

Finite Volume memory bandwidth intensive, simple data
dependencies

Finite Element compute- and cache-intensive, vectorizes

Full multigrid, well-defined, scale-free problem
Goal: necessary and sufficient

Every feature stressed by benchmark should be necessary for an
important application
Good performance on the benchmark should be sufficient for good
performance on most applications

https://hpgmg.org


Kiviat diagrams

c/o Ian Karlin and Bert Still (LLNL)



HPGMG distinguishes networks

About 1M dof/socket

Peregrine and Edison have identical node architecture

Peregrine has 5:1 tapered IB



Dynamic Range

BG/Q vectorization overloads cache, load/store: 88% FXU, 12%
FPU
Users like predictable performance across a range of problem sizes
Half of all PETSc users care about strong scaling more
Transient problems do not weak scale even if each step does



Where we are now: QR factorization with MKL on MIC

Figure compares two CPU sockets (230W TDP) to one MIC (300W
TDP plus host)

Performance/Watt only breaks even at largest problem sizes

104 ×104 matrix takes 667 GFlops: about 2 seconds

This is an O(n3/2) operation on n data

MIC cannot strong scale, no more energy efficient/cost effective



Outlook

Memory bandwidth is a major limitation
Can change algorithms to increase intensity

Usually increases stress on cache

Optimizing for vectorization can incur large bandwidth overhead

I think data motion is a more fundamental long-term concern

Latency is at least as important as throughput for many applications

“hard to program” versus “architecture ill-suited for problem”?
Performance varies with configuration

number of tracers, number of levels, desired steps/second
do not need optimality in all cases, but should degrade gracefully


