Exploiting structure with implicit methods

This talk: http://59A2.org/files/20141031-Structure.pdf

Jed Brown jedbrown@mcs.anl.gov (ANL and CU Boulder) Collaborators in this work: Mark Adams (LBL), Peter Brune (ANL/Google), Emil Constantinescu (ANL), Debojyoti Ghosh (ANL), Matt Knepley (UChicago), Dave May (ETH Zürich, Lois Curfman McInnes (ANL), Barry Smith (ANL))

UC Merced, 2014-10-31

Why implicit?

- Nature has many spatial and temporal scales
 - Porous media, structures, fluids, kinetics
- Science/engineering problem statement does not weak scale
 - More time steps required at high resolution
- Robust discretizations and implicit solvers are needed to cope
- Computer architecture is increasingly hierarchical
 - algorithms should conform to this structure
- Sparse matrices are comfortable, but outdated
 - Algebraic multigrid, factorization
 - Memory bandwidth-limited
- "black box" solvers are not sustainable
 - optimal solvers must accurately handle all scales
 - optimality is crucial for large-scale problems
 - hardware puts up a spirited fight to abstraction

The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - "parabolization" for stiff waves
- X Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

Δ

MomentumStokes Pressure

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

Boundary Layer

Ocean

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

Splitting for Multiphysics

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative] $\begin{bmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{bmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{bmatrix} A \\ 0 \end{bmatrix}^{-1} \begin{bmatrix} A \\$

Gauss-Seidel inspired, works when fields are loosely coupled
 Factorization: -pc_fieldsplit_type schur

$$\begin{bmatrix} A & B \\ S \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ CA^{-1} & 1 \end{bmatrix}^{-1}, \qquad S = D - CA^{-1}B$$

- robust (exact factorization), can often drop lower block
- how to precondition S which is usually dense?
 - interpret as differential operators, use approximate commutators
- "Composable Linear Solvers for Multiphysics" ISPDC 2012

Work in Split Local space, matrix data structures reside in any space.

Stokes + Implicit Free Surface

$$\begin{bmatrix} \eta D_{ij}(\boldsymbol{u}) \end{bmatrix}_{,j} - p_{,i} = f_i$$
$$u_{k,k} = 0$$
$$\hat{x}_i = \hat{x}_i^{t-\Delta t} + \Delta t \, u_i(\hat{x}_i)$$

COORDINATE RESIDUALS

$$F_x := -u_i + \frac{\hat{x}_i}{\Delta t} - \frac{\hat{x}_i^{t-\Delta}}{\Delta t}$$

[We use a full Lagrangian update of our mesh, with no remeshing]

"Drunken seaman", Rayleigh Taylor instability test case from Kaus et al., 2010. Dense, viscous material (yellow) overlying less dense, less viscous material (blue).

Stokes + Implicit Free Surface

Eigen-analysis plugin for solver design

Hydrostatic ice flow (nonlinear rheology and slip conditions)

$$-\nabla \left[\eta \begin{pmatrix} 4u_x + 2v_y & u_y + v_x & u_z \\ u_y + v_x & 2u_x + 4v_y & v_z \end{pmatrix} \right] + \rho g \nabla s = 0, \quad (1)$$

- Many solvers converge easily with no-slip/frozen bed, more difficult for slippery bed (ISMIP HOM test C)
- Geometric MG is good: $\lambda \in [0.805, 1]$ (SISC 2013)

Plugins in PETSc

Philosophy: Everything has a plugin architecture

- Vectors, Matrices, Coloring/ordering/partitioning algorithms
- Preconditioners, Krylov accelerators
- Nonlinear solvers, Time integrators
- Spatial discretizations/topology*

Example

Third party supplies matrix format and associated preconditioner, distributes compiled shared library. Application user loads plugin at runtime, no source code in sight.

Performance of assembled versus unassembled

- Arithmetic intensity for Q_p elements
 - < $\frac{1}{4}$ (assembled), ≈ 10 (unassembled), ≈ 4 to 8 (hardware)
- store Jacobian information at Quass quadrature points, can use AD

Power-law Stokes Scaling

(fairly easy geometry and coefficients, Brown 2010 (J.Sci.Comput.))

pTatin3d: Long-term lithosphere dynamics

- Dave May (ETH Zürich), Laetitia Le Pourhiet (UPMC Paris)
- Visco-elasto-plastic rheology
- Material-point method for material composition, 10¹⁰ jumps
- Large deformation, post-failure analysis
- Free surface: $Q_2 P_1^{\text{disc}}$ (non-affine)

pTatin3d: Long-term lithosphere dynamics

■ Assembled matrices: 9216*F*/38912*B* = 0.235*F*/*B*

- Problem size limited by memory
- Mediocre performance, limited by memory bandwidth
- Poor scalability within a node (memory contention)
- Lots of experimentation with different algorithms
- Multigrid: matrix-free on finest levels
- Matrix-free: 51435*F*/824*B* = 62.42*F*/*B*
 - 81 × 27 element gradient matrix
 - Element setup computes physical gradient matrix
 - 1.5× speedup when using all cores
- Tensor-product matrix-free: 16686*F*/824*B* = 20.25*F*/*B*
 - Tensor contractions with 3 × 3 1D matrices
 - Tiny working set, vectorize over 4 elements within L1 cache
 - 30% of Haswell FMA peak, register load/store limited
 - 7× speedup (5× speedup on Sandy Bridge AVX)

Hardware Arithmetic Intensity

Operation	Ar	Arithmetic Intensity (flops/B)				
Sparse matrix-vector	product	1/6				
Dense matrix-vector	product	1/4				
Unassembled matrix	-vector product	pprox 8				
High-order residual e	evaluation	> 5				
Processor	STREAM Triad (GB	/s)	Peak (GF/s)	Balance (F/B)		
E5-2680 8-core		38	173	4.5		
E5-2695v2 12-core		45	230	5.2		
E5-2699v3 18-core		60	660	11		
Blue Gene/Q node	29	9.3	205	7		
Kepler K20Xm	1	60	1310	8.2		
Xeon Phi SE10P	1	61	1060	6.6		
KNL (DRAM)	1	00	3000	30		
KNL (MCDRAM)	5	00	3000	6		

Δ

This is a dead end

■ Arithmetic intensity < 1/4

Idea: multiple right hand sides

 $\frac{(2k \text{ flops})(\text{bandwidth})}{\text{sizeof}(\text{Scalar}) + \text{sizeof}(\text{Int})}, \quad k \ll \text{avg. nz/row}$

- Problem: popular algorithms have nested data dependencies
 - Time step

Nonlinear solve

Krylov solve

Preconditioner/sparse matrix

Cannot parallelize/vectorize these nested loops

Can we create new algorithms to reorder/fuse loops?

- Reduce latency-sensitivity for communication
- Reduce memory bandwidth (reuse matrix)
- Implicit Runge-Kutta, creates tensor product structure
- Full space/one-shot methods for PDE-constrained optimization

This is a dead end

■ Arithmetic intensity < 1/4

Idea: multiple right hand sides

 $\frac{(2k \text{ flops})(\text{bandwidth})}{\text{sizeof}(\text{Scalar}) + \text{sizeof}(\text{Int})}, \quad k \ll \text{avg. nz/row}$

- Problem: popular algorithms have nested data dependencies
 - Time step

Nonlinear solve

Krylov solve

Preconditioner/sparse matrix

Cannot parallelize/vectorize these nested loops

Can we create new algorithms to reorder/fuse loops?

- Reduce latency-sensitivity for communication
- Reduce memory bandwidth (reuse matrix)
- Implicit Runge-Kutta, creates tensor product structure
- Full space/one-shot methods for PDE-constrained optimization

Beyond global linearization: FAS multigrid

p-Laplacian, p = 4, c = 0.5, MG-like preconditioners

Solv.	Т	N. It	L. It	Func	Jac	\mathbf{PC}	NPC
NK-MG	9.904	105	384	421	630	489	_
NK-MG-FAS	1.012	4	13	65	24	17	4
FASPIN	1.424	4	18	368	_	22	23
FAS	0.872	15	0	226	_	_	_
NCG-LFAS	1.376	8	0	400	_	_	25
NCG-RFAS	0.792	10	0	181	_	_	10
QN-LFAS	1.344	8	0	400	_	_	25
QN-RFAS	1.104	16	0	289	_	_	16
NGMRESL-FAS	0.684	7	0	128	_	_	8
NGMRESR-FAS	0.648	8	0	129	_	_	8

Geometric coarse grids and rediscretization

Lagged quasi-Newton for nonlinear elasticity

Method	Lag	LS	Linear Solve	lts.	F(u)	Jacobian	P^{-1}
LBFGS	3	ср	preonly	18	37	5	18
LBFGS	3	ср	10^{-5}	21	43	6	173
LBFGS	6	ср	preonly	24	49	4	24
LBFGS	6	ср	10^{-5}	30	61	5	266
JFNK	0	ср	preonly	11	23	11	11
JFNK	0	ср	10^{-5}	8	69	8	60
JFNK	1	ср	preonly	15	31	8	15
JFNK	1	ср	10^{-5}	7	2835	4	2827
JFNK	3	ср	preonly	23	47	6	23
JFNK	3	ср	10^{-5}	7	3143	2	3135

■ B and Brune, MC2013

IMEX time integration in PETSc

Additive Runge-Kutta IMEX methods

 $G(t, x, \dot{x}) = F(t, x)$ $J_{\alpha} = \alpha G_{\dot{x}} + G_{x}$

User provides:

- FormRHSFunction(ts,t,x,F,void *ctx);
- FormIFunction(ts,*t*,*x*,*x*,*G*,void *ctx);
- FormIJacobian(ts,t,x,x,α,J,J_p,mstr,void *ctx);
- Can have *L*-stable DIRK for stiff part *G*, SSP explicit part, etc.
- Orders 2 through 5, embedded error estimates
- Dense output, hot starts for Newton
- More accurate methods if G is linear, also Rosenbrock-W
- Can use preconditioner from classical "semi-implicit" methods
- FAS nonlinear solves supported
- Extensible adaptive controllers, can change order within a family
- Easy to register new methods: TSARKIMEXRegister()
- Single step interface so user can have own time loop
- Same interface for Extrapolation IMEX, LMS IMEX (in development)

Δ

au corrections

- Plane strain elasticity, E = 1000, v = 0.4 inclusions in
 - E = 1, v = 0.2 material, coarsen by 3^2 .
- Solve initial problem everywhere and compute $\tau_h^H = A^H \hat{I}_h^H u^h I_h^H A^h u^h$
- Change boundary conditions and solve FAS coarse problem

$$N^{H}\dot{u}^{H} = \underbrace{I_{h}^{H}\dot{f}^{h}}_{\dot{f}^{H}} + \underbrace{N^{H}\hat{I}_{h}^{H}\tilde{u}^{h} - I_{h}^{H}N^{h}\tilde{u}^{h}}_{\tau_{h}^{H}}$$

- Prolong, post-smooth, compute error $e^h = \acute{u}^h (N^h)^{-1}\acute{t}^h$
- Coarse grid with au is nearly 10× better accuracy

au corrections

- Plane strain elasticity, E = 1000, v = 0.4 inclusions in
 - E = 1, v = 0.2 material, coarsen by 3^2 .
- Solve initial problem everywhere and compute $\tau_h^H = A^H \hat{I}_h^H u^h I_h^H A^h u^h$
- Change boundary conditions and solve FAS coarse problem

$$N^{H}\dot{u}^{H} = \underbrace{I_{h}^{H}\dot{f}^{h}}_{\dot{f}^{H}} + \underbrace{N^{H}\hat{I}_{h}^{H}\tilde{u}^{h} - I_{h}^{H}N^{h}\tilde{u}^{h}}_{\tau_{h}^{H}}$$

- Prolong, post-smooth, compute error $e^h = \dot{u}^h (N^h)^{-1} \dot{f}^h$
- Coarse grid with τ is nearly 10× better accuracy

Low communication MG

- red arrows can be removed by *τ*-FAS with overlap
- blue arrows can also be removed, but then algebraic convergence stalls when discretization error is reached
- no simple way to check that discretization error is obtained
- if fine grid state is not stored, use compatible relaxation to complete prolongation P
- "Segmental refinement" by Achi Brandt (1977)
- 2-process case by Brandt and Diskin (1994)

Segmental refinement: no horizontal communication

- 27-point second-order stencil, manufactured analytic solution
- 5 SR levels: 16³ cells/process local coarse grid
- Overlap = Base + $(L \ell)$ Increment

Implementation requires even number of cells—round down.

■ FMG with V(2,2) cycles

Nonlinear and matrix-free smoothing

- matrix-based smoothers require global linearization
- nonlinearity often more efficiently resolved locally
- nonlinear additive or multiplicative Schwarz
- nonlinear/matrix-free is good if

 $C = \frac{(\text{cost to evaluate residual at one "point"}) \cdot N}{(\text{cost of global residual})} \sim 1$

- finite difference: C < 2
- finite volume: $C \sim 2$, depends on reconstruction
- finite element: C ~ number of vertices per cell
- Iarger block smoothers help reduce C
- additive correction (Jacobi/Chebyshev/multi-stage)
 - global evaluation, as good as C = 1
 - but, need to assemble corrector/scaling
 - need spectral estimates or wave speeds

Multiscale compression and recovery using au form

- Normal multigrid cycles visit all levels moving from $n \rightarrow n+1$
- FMG recovery only accesses levels finer than ℓ_{CP}
- Only failed processes and neighbors participate in recovery
- Lightweight checkpointing for transient adjoint computation
- Postprocessing applications, e.g., in-situ visualization at high temporal resolution in part of the domain

HPGMG-FE https://hpgmg.org

- Maximize science per Watt
- Huge scope remains at problem formulation
- Raise level of abstraction at which a problem is formally specified
- Algorithmic optimality is crucial
- Real problems are messy
- Performance is always messy at scale
- Improve matrix-free abstractions, robustness, diagnostics
- Ideas are easy, implementation and practical issues are hard
- Better language/library support for aggregating

