
Exploiting structure with implicit
methods

This talk:
http://59A2.org/files/20141031-Structure.pdf

Jed Brown jedbrown@mcs.anl.gov (ANL and CU Boulder)
Collaborators in this work:

Mark Adams (LBL), Peter Brune (ANL/Google), Emil Constantinescu
(ANL),

Debojyoti Ghosh (ANL), Matt Knepley (UChicago),
Dave May (ETH Zürich, Lois Curfman McInnes (ANL),

Barry Smith (ANL))

UC Merced, 2014-10-31

http://59A2.org/files/20141031-Structure.pdf

Why implicit?

Nature has many spatial and temporal scales
Porous media, structures, fluids, kinetics

Science/engineering problem statement does not weak scale
More time steps required at high resolution

Robust discretizations and implicit solvers are needed to cope
Computer architecture is increasingly hierarchical

algorithms should conform to this structure

Sparse matrices are comfortable, but outdated
Algebraic multigrid, factorization
Memory bandwidth-limited

“black box” solvers are not sustainable
optimal solvers must accurately handle all scales
optimality is crucial for large-scale problems
hardware puts up a spirited fight to abstraction

The Great Solver Schism: Monolithic or Split?

Monolithic

Direct solvers

Coupled Schwarz

Coupled Neumann-Neumann
(need unassembled matrices)

Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

Physics-split Schwarz
(based on relaxation)

Physics-split Schur
(based on factorization)

approximate commutators
SIMPLE, PCD, LSC
segregated smoothers
Augmented Lagrangian
“parabolization” for stiff
waves

X Need to understand global
coupling strengths

Preferred data structures depend on which method is used.
Interplay with geometric multigrid.

Multi-physics coupling in PETSc

Momentum Pressure

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

Boundary Layer

Ocean

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting

Splitting for Multiphysics[
A B
C D

][
x
y

]
=

[
f
g

]
Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative][

A
D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

][
A
C D

]−1
)

Gauss-Seidel inspired, works when fields are loosely coupled
Factorization: -pc_fieldsplit_type schur[

A B
S

]−1[
1

CA−1 1

]−1

, S = D−CA−1B

robust (exact factorization), can often drop lower block
how to precondition S which is usually dense?

interpret as differential operators, use approximate commutators

“Composable Linear Solvers for Multiphysics” ISPDC 2012

rank 0

rank 2

rank 1

rank 0

rank 1

rank 2

LocalToGlobalMapping

Monolithic Global Monolithic Local

Split Local

GetLocalSubMatrix()

Split Global

GetSubMatrix() / GetSubVector()

LocalToGlobal()

rank 0

rank 1

rank 2

Work in Split Local space, matrix data structures reside in any space.

Text
May, Le Pourhiet & Brown: Coupled Geodynamics

Stokes + Implicit Free Surface

16

“Drunken seaman”, Rayleigh
Taylor instability test case from
Kaus et al., 2010. Dense, viscous
material (yellow) overlying less
dense, less viscous material
(blue).

Momentum

Pressure“S
to

ke
s”

Coordinates

COORDINATE RESIDUALS

JACOBIAN

NESTED PRECONDITIONER

Reuse stokes
operators and
saddle point

preconditioners

[We use a full Lagrangian update of our mesh, with no remeshing]

16Sunday, December 4, 2011

Text
May, Le Pourhiet & Brown: Coupled Geodynamics 17

Stokes + Implicit Free Surface

* Picard fails to converge for
large time steps sizes.

* Newton is robust for a wide
range of time step sizes.

[nonlinear residual stagnates!]

[nonlinear residual stagnates!]

17Sunday, December 4, 2011

Eigen-analysis plugin for solver design
Hydrostatic ice flow (nonlinear rheology and slip conditions)

−∇

[
η

(
4ux + 2vy uy + vx uz

uy + vx 2ux + 4vy vz

)]
+ ρg∇s = 0, (1)

Many solvers converge easily with no-slip/frozen bed, more difficult
for slippery bed (ISMIP HOM test C)
Geometric MG is good: λ ∈ [0.805,1] (SISC 2013)

(a) λ0 = 0.0268 (b) λ1 = 0.0409

Plugins in PETSc

Philosophy: Everything has a plugin architecture

Vectors, Matrices, Coloring/ordering/partitioning algorithms

Preconditioners, Krylov accelerators

Nonlinear solvers, Time integrators

Spatial discretizations/topology∗

Example

Third party supplies matrix format and associated preconditioner,
distributes compiled shared library. Application user loads plugin at
runtime, no source code in sight.

Performance of assembled versus unassembled

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

Arithmetic intensity for Qp elements
< 1

4 (assembled), ≈ 10 (unassembled), ≈ 4 to 8 (hardware)

store Jacobian information at Quass quadrature points, can use AD

Power-law Stokes Scaling

Only assemble Q1 matrices, ML+PETSc smoothers for elliptic pieces
(fairly easy geometry and coefficients, Brown 2010 (J.Sci.Comput.))

pTatin3d: Long-term lithosphere dynamics

Dave May (ETH Zürich), Laetitia Le Pourhiet (UPMC Paris)
Visco-elasto-plastic rheology
Material-point method for material composition, 1010 jumps
Large deformation, post-failure analysis
Free surface: Q2−Pdisc

1 (non-affine)

pTatin3d: Long-term lithosphere dynamics

Assembled matrices: 9216F/38912B = 0.235F/B
Problem size limited by memory
Mediocre performance, limited by memory bandwidth
Poor scalability within a node (memory contention)
Lots of experimentation with different algorithms
Multigrid: matrix-free on finest levels

Matrix-free: 51435F/824B = 62.42F/B
81×27 element gradient matrix
Element setup computes physical gradient matrix
1.5× speedup when using all cores

Tensor-product matrix-free: 16686F/824B = 20.25F/B
Tensor contractions with 3×3 1D matrices
Tiny working set, vectorize over 4 elements within L1 cache
30% of Haswell FMA peak, register load/store limited
7× speedup (5× speedup on Sandy Bridge AVX)

Hardware Arithmetic Intensity
Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor STREAM Triad (GB/s) Peak (GF/s) Balance (F/B)

E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
E5-2699v3 18-core 60 660 11
Blue Gene/Q node 29.3 205 7
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6

KNL (DRAM) 100 3000 30
KNL (MCDRAM) 500 3000 6

This is a dead end
Arithmetic intensity < 1/4

Idea: multiple right hand sides

(2k flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
, k � avg. nz/row

Problem: popular algorithms have nested data dependencies
Time step

Nonlinear solve
Krylov solve

Preconditioner/sparse matrix

Cannot parallelize/vectorize these nested loops
Can we create new algorithms to reorder/fuse loops?

Reduce latency-sensitivity for communication
Reduce memory bandwidth (reuse matrix)
Implicit Runge-Kutta, creates tensor product structure
Full space/one-shot methods for PDE-constrained optimization

This is a dead end
Arithmetic intensity < 1/4

Idea: multiple right hand sides

(2k flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
, k � avg. nz/row

Problem: popular algorithms have nested data dependencies
Time step

Nonlinear solve
Krylov solve

Preconditioner/sparse matrix

Cannot parallelize/vectorize these nested loops
Can we create new algorithms to reorder/fuse loops?

Reduce latency-sensitivity for communication
Reduce memory bandwidth (reuse matrix)
Implicit Runge-Kutta, creates tensor product structure
Full space/one-shot methods for PDE-constrained optimization

Beyond global linearization: FAS multigrid

Geometric coarse grids and rediscretization

Lagged quasi-Newton for nonlinear elasticity

Method Lag LS Linear Solve Its. F(u) Jacobian P−1

LBFGS 3 cp preonly 18 37 5 18
LBFGS 3 cp 10−5 21 43 6 173
LBFGS 6 cp preonly 24 49 4 24
LBFGS 6 cp 10−5 30 61 5 266

JFNK 0 cp preonly 11 23 11 11
JFNK 0 cp 10−5 8 69 8 60
JFNK 1 cp preonly 15 31 8 15
JFNK 1 cp 10−5 7 2835 4 2827
JFNK 3 cp preonly 23 47 6 23
JFNK 3 cp 10−5 7 3143 2 3135

B and Brune, MC2013

IMEX time integration in PETSc
Additive Runge-Kutta IMEX methods

G(t,x , ẋ) = F(t,x)

Jα = αGẋ + Gx

User provides:
FormRHSFunction(ts,t,x,F,void *ctx);
FormIFunction(ts,t,x,ẋ,G,void *ctx);
FormIJacobian(ts,t,x,ẋ,α,J,Jp,mstr,void *ctx);

Can have L-stable DIRK for stiff part G, SSP explicit part, etc.
Orders 2 through 5, embedded error estimates
Dense output, hot starts for Newton
More accurate methods if G is linear, also Rosenbrock-W
Can use preconditioner from classical “semi-implicit” methods
FAS nonlinear solves supported
Extensible adaptive controllers, can change order within a family
Easy to register new methods: TSARKIMEXRegister()

Single step interface so user can have own time loop
Same interface for Extrapolation IMEX, LMS IMEX (in development)

τ corrections

Plane strain elasticity, E = 1000,ν = 0.4 inclusions in
E = 1,ν = 0.2 material, coarsen by 32.
Solve initial problem everywhere and compute
τH

h = AH ÎH
h uh− IH

h Ahuh

Change boundary conditions and solve FAS coarse problem

NH úH = IH
h f́ h︸︷︷︸
f́ H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

Prolong, post-smooth, compute error eh = úh− (Nh)−1 f́ h

Coarse grid with τ is nearly 10× better accuracy

τ corrections

Plane strain elasticity, E = 1000,ν = 0.4 inclusions in
E = 1,ν = 0.2 material, coarsen by 32.
Solve initial problem everywhere and compute
τH

h = AH ÎH
h uh− IH

h Ahuh

Change boundary conditions and solve FAS coarse problem

NH úH = IH
h f́ h︸︷︷︸
f́ H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

Prolong, post-smooth, compute error eh = úh− (Nh)−1 f́ h

Coarse grid with τ is nearly 10× better accuracy

Low communication MG

red arrows can be removed by
τ-FAS with overlap

blue arrows can also be removed,
but then algebraic convergence
stalls when discretization error is
reached

no simple way to check that
discretization error is obtained

if fine grid state is not stored, use
compatible relaxation to complete
prolongation P

“Segmental refinement” by Achi
Brandt (1977)

2-process case by Brandt and
Diskin (1994)

Segmental refinement: no horizontal communication
27-point second-order stencil, manufactured analytic solution
5 SR levels: 163 cells/process local coarse grid
Overlap = Base + (L− `)Increment

Implementation requires even number of cells—round down.

FMG with V (2,2) cycles

Table: ‖eSR‖∞
/‖eFMG‖∞

Base
Increment 1 2 3

1 1.59 2.34 1.00
2 1.00 1.00 1.00
3 1.00 1.00 1.00

16 128 1024 8192 65536
0

5

10

15

20

25

cores (Edison)

T
im

e

Solve times: Laplacian, u=(x
4
 − L

2
 x

2
), L=(2,1,1) (8 solves)

1 F−cycle w/ V(2,2), 128
3
 cells/core, 8 solves − non−redundant CGS

1 F−cycle w/ V(2,2), 128
3
 cells/core, 8 solves − SR, non−redundant CGS

V(2,2) cycles, 128
3
 cells, rtol=10.

−4
, 8 solves, non−redundant CGS

1 F−cycle w/ V(2,2), N=32/core, 512 solves − redundant CGS
1 F−cycle w/ V(2,2), N=32/core, 512 solves − non−redundant CGS
1 F−cycle w/ V(2,2), N=32/core, 512 solves − SR, non−redundant CGS

Nonlinear and matrix-free smoothing
matrix-based smoothers require global linearization
nonlinearity often more efficiently resolved locally
nonlinear additive or multiplicative Schwarz
nonlinear/matrix-free is good if

C =
(cost to evaluate residual at one “point”) ·N

(cost of global residual)
∼ 1

finite difference: C < 2
finite volume: C ∼ 2, depends on reconstruction
finite element: C ∼ number of vertices per cell

larger block smoothers help reduce C
additive correction (Jacobi/Chebyshev/multi-stage)

global evaluation, as good as C = 1
but, need to assemble corrector/scaling
need spectral estimates or wave speeds

Multiscale compression and recovery using τ form

`fine

`cp + 1

`cp

.

`cp

`cp + 1

`fine

CP

R
es

tr
ic

tSolve F(un;bn) = 0

next solve

bn+1(un,bn)bn

CP

CR CR

`fine

CR

`fineτ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

FMG Recovery

checkpoint converged coarse state
recover using FMG anchored at `cp + 1
needs only `cp neighbor points
τ correction is local

Normal multigrid cycles visit all levels moving from n→ n + 1

FMG recovery only accesses levels finer than `CP

Only failed processes and neighbors participate in recovery

Lightweight checkpointing for transient adjoint computation

Postprocessing applications, e.g., in-situ visualization at high
temporal resolution in part of the domain

HPGMG-FE https://hpgmg.org

https://hpgmg.org

Maximize science per Watt

Huge scope remains at problem formulation

Raise level of abstraction at which a problem is formally
specified

Algorithmic optimality is crucial

Real problems are messy

Performance is always messy at scale

Improve matrix-free abstractions, robustness, diagnostics

Ideas are easy, implementation and practical issues are hard

Better language/library support for aggregating

