
Software design and packaging for
extensibility, provenance, and sharing

Jed Brown jedbrown@mcs.anl.gov

CIG Webinar, 2014-11-13

This talk: http://59A2.org/files/20141113-Software.pdf

http://59A2.org/files/20141113-Software.pdf


Firetran!

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript

recompile to use JavaScript

Character encoding compiled in

Mutually incompatible forks

No confusing run-time proxy dialogs, edit file and recompile

Proxy configuration compiled in

For security, HTTP and HTTPS mutually incompatible

Address in configuration file, run executable to render page

Tcl script manages configuration file

Plan to extend script to recompile Firetran with optimal features for
each page.



Firetran!

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript

recompile to use JavaScript

Character encoding compiled in

Mutually incompatible forks

No confusing run-time proxy dialogs, edit file and recompile

Proxy configuration compiled in

For security, HTTP and HTTPS mutually incompatible

Address in configuration file, run executable to render page

Tcl script manages configuration file

Plan to extend script to recompile Firetran with optimal features for
each page.



Firetran!

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript

recompile to use JavaScript

Character encoding compiled in

Mutually incompatible forks

No confusing run-time proxy dialogs, edit file and recompile

Proxy configuration compiled in

For security, HTTP and HTTPS mutually incompatible

Address in configuration file, run executable to render page

Tcl script manages configuration file

Plan to extend script to recompile Firetran with optimal features for
each page.



Firetran!

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript

recompile to use JavaScript

Character encoding compiled in

Mutually incompatible forks

No confusing run-time proxy dialogs, edit file and recompile

Proxy configuration compiled in

For security, HTTP and HTTPS mutually incompatible

Address in configuration file, run executable to render page

Tcl script manages configuration file

Plan to extend script to recompile Firetran with optimal features for
each page.



Firetran!

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript

recompile to use JavaScript

Character encoding compiled in

Mutually incompatible forks

No confusing run-time proxy dialogs, edit file and recompile

Proxy configuration compiled in

For security, HTTP and HTTPS mutually incompatible

Address in configuration file, run executable to render page

Tcl script manages configuration file

Plan to extend script to recompile Firetran with optimal features for
each page.



Firetran!

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript

recompile to use JavaScript

Character encoding compiled in

Mutually incompatible forks

No confusing run-time proxy dialogs, edit file and recompile

Proxy configuration compiled in

For security, HTTP and HTTPS mutually incompatible

Address in configuration file, run executable to render page

Tcl script manages configuration file

Plan to extend script to recompile Firetran with optimal features for
each page.



Firetran!

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript

recompile to use JavaScript

Character encoding compiled in

Mutually incompatible forks

No confusing run-time proxy dialogs, edit file and recompile

Proxy configuration compiled in

For security, HTTP and HTTPS mutually incompatible

Address in configuration file, run executable to render page

Tcl script manages configuration file

Plan to extend script to recompile Firetran with optimal features for
each page.



Firetran!

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript

recompile to use JavaScript

Character encoding compiled in

Mutually incompatible forks

No confusing run-time proxy dialogs, edit file and recompile

Proxy configuration compiled in

For security, HTTP and HTTPS mutually incompatible

Address in configuration file, run executable to render page

Tcl script manages configuration file

Plan to extend script to recompile Firetran with optimal features for
each page.



Firetran!

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript

recompile to use JavaScript

Character encoding compiled in

Mutually incompatible forks

No confusing run-time proxy dialogs, edit file and recompile

Proxy configuration compiled in

For security, HTTP and HTTPS mutually incompatible

Address in configuration file, run executable to render page

Tcl script manages configuration file

Plan to extend script to recompile Firetran with optimal features for
each page.



Firetran struggles with market share

Status quo in many scientific software packages

Why do we tolerate it?

Is scientific software somehow different?



Trends in Computational Science

multiphysics, multiscale

data assimilation, inversion, UQ

risk-aware design and decision

deeper software stacks

many forms of extensibility

artificial bottlenecks



Compile-time configuration

configuration in build system

over-emphasis on “efficiency”
templates are compile-time

combinatorial number of variants

compromises on-line analysis capability

create artificial IO bottlenecks

offloads complexity to scripts and “workflow” tools

limits automation and testing of calibration

maintaining consistency complicates provenance



Model coupling

Hero codes
visionary scientist in single domain
each package is king of its own environment

holes in knowledge exist at gaps between existing models

models operate at different scales with different uncertainties

coupling is hard enough with well-behaved components
think like a library developer

minimize assumptions about environment
no globals, act locally, be explicit
successes: compilers, web browsers, databases



Provenance and Usability

How to capture all configuration knobs so experiment can be
reproduced? Compare

single run-time configuration file
compile-time configuration, multiple build systems, files passed
between stages

transitive dependencies must also be good libraries

plugins better than source modification



“Big” Data

Workflows with multiple executables pass data through file system

About 1 hour to read/write contents of volatile memory
Global storage as alogrithmic mechanism is dead

Better to run in-core on a larger machine
Out-of-core on full machine blows annual compute budget in one
shot

Circumvent IO bottleneck by passing data in-memory to next stage



Nested dependencies

Encapsulation is important to control complexity

Reconfiguring indirect dependencies breaks encapsulation
Single library may be used by multiple components in executable

diamond dependency graph
conflict unless same version/configuration can be used for both



Packaging and distribution

Developers underestimate challenge of installing software

User experience damaged even when user’s fault (broken
environment)

Package managers (Debian APT, RedHat RPM, MacPorts,
Homebrew, etc.)

Binary interface stability critical to packagers



User modifications versus plugins

Fragmentation is expensive and should be avoided

Maintaining local modifications causes divergence

Better to contain changes to a plugin

dlopen() and register implementations in the shared library
Invert dependencies and avoid loops

libB depends on libA
want optional implementation of libA that uses libB
libA-plugin depends on both libA and libB

Static libraries are anti-productive (tell your computing center)
Can sort-of do plugins by changing link line



Controlling transitive complexity

Implementation complexity must not leak into public interface

Choose good defaults and provide a way to configure inner parts

Inversion of Control (“dependency injection”, “service locator”)

Can be multiple instances of components; identify using “prefix”
rule

Some use embedded Turing-complete configuration/scripting
language



Object-oriented design

Should all errors be compile-time errors?
Sounds good in theory, but brittle

Should matrices have computable entries?
Should the diagonal be extractable?
Can the transpose be applied?
Do “Neumann” subproblems exist?
Different preconditioners require different properties from Matrix



Controlling the Binary interface

Recompiling code is wasted productivity

Implementation concerns (private variables, new virtual methods)
should not require recompiling user code

PETSc uses opaque pointers and the “delegator” (aka. “pointer to
implementation”) pattern.

Static function overhead insignificant, incremental cost less than 2
cycles

Better for debugging

Easier to expose libraries to dynamic programming languages



Just-in-Time Compilation (JIT)

Fine-grained composition benefits from inlining

Dynamic dispatch a much better library interface

Templating not extensible via plugins, bloated, slow to compile

JIT is promising for dynamic kernel fusion, plugin-style packaging



Upstreaming and community building

Maintainers should provide good alternatives to forking

Welcoming environment for contributions
Privacy, “scooping”, openness

My opinion: social problem, deal with using social means

Major tech companies have grossly underestimated cost of forking

In science, we cannot pay off technical debt incurred by forking

Provide extension points to reduce cost of new development



Workflow ideals

’master’ is always stable and ready to release

features are complete and tested before appearing in ’master’

commits are minimal logically coherent, reviewable, and testable
units

related commits go together so as to be reviewable and
debuggable by specialist

new development is not disrupted by others’ features and bugs

rapid collaboration between developers possible

git log --first-parent maint..master reads like a
changelog

bugs can be fixed once and anyone that needs the fix can obtain it
without side-effects



Simplified gitworkflows(7)

merges to be discarded when ‘next’ is rewound at next release

reviewed, thought 
to be complete test periods overlap

“graduation”
merged with 
evidence of stability

typical feature branch

v1.0 v2.0

v2.1

time

first-parent history of branch

maint

master..

.feature did not 
graduate for v2.0

.

.

. merge in first-parent history of ‘master’ or ‘maint’ (approximate “changelog”)

. merge to branch ‘next’ (discarded after next major release)

. commit in feature branch (feature branches usually start from ‘master’)

next

. .

. .

fix issue found by 
external client

.

.

.

.

. . .

risky feature

.

‘master’ contains 
‘maint’

.
‘next’ contains 
‘master’

latest feature 
release

maintenance 
release

testing and “eager” users,
bugs here only affect 
integration, not development

merge history (not first-parent)

. commit in bug-fix branch (bug-fix branches usually start from ‘maint’ or earlier)

testing & users

bug fixes tested 
like features

bug fix
for release

review 
pull req

v3.0

upcoming feature release 
will be tagged on ‘master’

next
after each release, the old ‘next’ 
is discarded and recreated

‘master’ is a stable base for 
new features, always ready 
to release

‘maint’ contains latest 
feature release



Best practices
Every branch has a purpose
Distinguish integration branches from topic branches
Do all development in topic branches

git checkout -b my/feature-branch master
Namespace your branches if working on a shared repository
Merge integration branches “forward”

maint-1→ maint→ master→ next
git checkout -b my/bugfix-branch maint-1

Write clear commit messages for reviewers and people trying to
debug your code
Avoid excessive merging from upstream

Always write a clear commit message explaining what is being
merged and why

Always merge topic branches as non-fast-forward (merge
--no-ff)
Gracefully retry if you lose a race to shared integration branch

This maximizes utility of --first-parent history

https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-merging
https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-racy-integration


Outlook

Think like a library developer

Avoid assumptions about environment

Make everything a run-time decision

Control complexity

Encourage contributions

Plan for creative new directions you didn’t think of


	Development Workflow

