
How can we quantify
performance versatility?

Jed Brown jedbrown@mcs.anl.gov (ANL and CU Boulder)

JointLab, Chicago, 2014-11-24

This talk: http://59A2.org/files/20141124-Versatility.pdf

http://59A2.org/files/20141124-Versatility.pdf


Why do we need an exascale computer?

Science & engineering demands
Model fidelity: resolution, multi-scale, coupling
Inversion/data assimilation
Optimization, control
Quantify uncertainty, risk-aware decisions
Sequence of forward simulations, each needing more time steps

External requirements on time-to-solution
Policy: 5 SYPD for climate model to inform IPCC
Weather: 250x faster than real-time
Supply chain dynamics, manufacturing
Field studies, disaster response
Transient simulation is not weak scaling

“weak scaling” [. . . ] will increasingly give way to “strong scaling”
[The International Exascale Software Project Roadmap, 2011]



Is the tail wagging the dog?

Creative thinking about science/engineering problems
Guide software and hardware choices
Scientist: “your code doesn’t scale”
Center: “your machine is inappropriate for my application”

Find corners of “science” that can use the machines
Incentivize solving problems hardware is good at

funding, allocations
“if your code doesn’t run on machine X, I’m not paying”

“The easiest way to make software scalable is to make it
sequentially inefficient” – Gropp (1999)

Suboptimal modeling/algorithms are subtle inefficiency

Fragmenting high-end from low-end, no middle
Opportunity in advancing low-end to medium scale



Versatility

Solve problems of maximum science/engineering interest

At practical accuracy

With desired turn-around time

On available hardware

Using modular, extensible software

Reliably, debuggable

Automate everything



Why a new benchmark?

Goodhart’s Law

When a measure becomes a target, it ceases to be a good measure.

But surely we can do better than HPL
Every feature stressed by benchmark should be necessary for an
important application
Good performance on the benchmark should be sufficient for good
performance on most applications



HPGMG: a new benchmarking proposal

https://hpgmg.org, hpgmg-forum@hpgmg.org mailing list

Mark Adams, Sam Williams (finite-volume), Jed Brown
(finite-element), John Shalf, Brian Van Straalen, Erich Strohmeier,
Rich Vuduc

Building momentum, BoF at SC14

Implementations

Finite Volume memory bandwidth intensive, simple data
dependencies

Finite Element compute- and cache-intensive, vectorizes,
overlapping writes

Full multigrid, well-defined, scale-free problem

Best-known algorithms, no “fat” left to trim

Representative of structure-exploiting algorithms

https://hpgmg.org


SuperMUC (FDR 10, E5-2680)

138B

25.8B

4.8B

1.6B

600M
29B

�rst solve

after changing

problem size

v
a
ria

b
ility



Edison (Aries, E5-2695v2)

155B

69B

12.9B

4.8B
1.6B

variability



Edison, SuperMUC, Titan

Titan >200ms

v
a
r
ia

b
ilit

y
1.6B

155B

309B
12.9B



HPGMG distinguishes networks at 1M dofs/core

Peregrine and Edison have identical node architecture
Peregrine has 5:1 tapered IB, Edison has Aries dragonfly topology



MIC communication bottlenecks on Stampede



Hardware Arithmetic Intensity
Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product, residual & 8

Processor STREAM Triad (GB/s) Peak (GF/s) Balance (F/B)

E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
E5-2699v3 18-core 60 660 11
Blue Gene/Q node 29.3 205 7
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6

KNL (DRAM) 100 3000 30
KNL (MCDRAM) 500 3000 6



How much parallelism out of how much cache?

Processor v width threads F/inst latency L1D L1D/#par

Nehalem 2 1 2 5 32 KiB 1638 B
Sandy Bridge 4 2 2 5 32 KiB 819 B
Haswell 4 2 4 5 32 KiB 410 B
BG/P 2 1 2 6 32 KiB 1365 B
BG/Q 4 4 2 6 32 KiB 682 B
KNC 8 4 4 5 32 KiB 205 B
Tesla K20 32 * 2 10 64 KiB 102 B

Most “fast” algorithms do about O(n) flops on n data

DGEMM and friends do O(n3/2) flops on n data

Exploitable parallelism limited by cache and register load/store

L2/L3 performance highly variable between architectures



Where we are now: QR factorization with MKL on MIC

Figure compares two CPU sockets (230W TDP) to one MIC (300W
TDP plus host)
Performance/Watt only breaks even at largest problem sizes
Haswell-EP doubles performance within same power envelope
104 ×104 matrix takes 667 GFlops: about 2 seconds
This is an O(n3/2) operation on n data
MIC cannot strong scale, no more energy efficient/cost effective
“hard to program” versus “architecture ill-suited for problem”?



Outlook

How can we measure versatility?
Opportunity cost of avoiding problems that “don’t scale”

What is the impact of performance variability?
Allocation budgeting, coupling, load balancing

We should strive to put ourselves out of business


