
Exploiting structure
in scientific computing

This talk:
http://59A2.org/files/20141211-Structure.pdf

Jed Brown jed@jedbrown.org (ANL and CU Boulder)

CU Boulder, 2014-12-11

http://59A2.org/files/20141211-Structure.pdf

Computational
Science &

Engineering

Application
Areas

Continuum
modeling

Policy &
Market

Observation

Quantities
of interest

Deterministic
Modeling

Discretization

Solvers

Parallel
Algorithms

Efficiency

Software

Analysis &
Uncertainty

Stability

SensitivityOptimization

Data
assimilation
& validation

PETSc

Portable Extensible Toolkit for Scientific computing

Jed: User since 2004, developer since 2008

Known for parallel (differential) algebraic solvers

TAO: Toolbox for Advanced Optimization

Used by many open source libraries and applications

Deployment mechanism for algorithm development

Industry: Abaqus, Boeing, Schlumberger, Shell, etc.
Awards

3 Gordon Bell Prizes have used PETSc (1999, 2003, 2004)
R&D100, E.O. Lawrence Award, SIAM/ACM CS&E Prize

This talk

Implicitness: multiple time scales

Coupling for multi-physics

Multigrid solvers

Parallelism and efficiency

State of implicitness

Nature has many spatial and temporal scales
Porous media, structures, fluids, kinetics
Quasi-equilibrium processes

Science/engineering problem statement does not weak scale
More time steps required at higher resolution

Robust discretizations and implicit solvers are needed to cope
Computer architecture is increasingly hierarchical

algorithms should conform to this structure

Sparse matrices are comfortable, but outdated
Algebraic multigrid, factorization
Memory bandwidth-limited

“black box” solvers are not sustainable: O(n2) in 3D
optimal solvers must accurately handle all scales
optimality is crucial for large-scale problems
hardware puts up a spirited fight to abstraction

Model Coupling

f (u;v) = 0

g(v ;u) = 0

f and g developed independently

The Great Solver Schism: Monolithic or Split?

Monolithic

Direct solvers

Coupled Schwarz

Coupled Neumann-Neumann
(need unassembled matrices)

Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

Physics-split Schwarz
(based on relaxation)

Physics-split Schur
(based on factorization)

approximate commutators
SIMPLE, PCD, LSC
segregated smoothers
Augmented Lagrangian
“parabolization” for stiff
waves

X Need to understand global
coupling strengths

Preferred data structures depend on which method is used.
Interplay with geometric multigrid.

Multi-physics coupling in PETSc

Momentum Pressure

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

Boundary Layer

Ocean

package each “physics”
independently

solve single-physics and
coupled problems

semi-implicit and fully implicit

reuse residual and Jacobian
evaluation unmodified

direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

matrix-free anywhere

multiple levels of nesting

Splitting for Multiphysics[
A B
C D

][
x
y

]
=

[
f
g

]
Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative][

A
D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

][
A
C D

]−1
)

Gauss-Seidel inspired, works when fields are loosely coupled
Factorization: -pc_fieldsplit_type schur[

A B
S

]−1[
1

CA−1 1

]−1

, S = D−CA−1B

robust (exact factorization), can often drop lower block
how to precondition S which is usually dense?

interpret as differential operators, use approximate commutators

“Composable Linear Solvers for Multiphysics” ISPDC 2012

rank 0

rank 2

rank 1

rank 0

rank 1

rank 2

LocalToGlobalMapping

Monolithic Global Monolithic Local

Split Local

GetLocalSubMatrix()

Split Global

GetSubMatrix() / GetSubVector()

LocalToGlobal()

rank 0

rank 1

rank 2

Work in Split Local space, matrix data structures reside in any space.

Text
May, Le Pourhiet & Brown: Coupled Geodynamics

Stokes + Implicit Free Surface

16

“Drunken seaman”, Rayleigh
Taylor instability test case from
Kaus et al., 2010. Dense, viscous
material (yellow) overlying less
dense, less viscous material
(blue).

Momentum

Pressure“S
to

ke
s”

Coordinates

COORDINATE RESIDUALS

JACOBIAN

NESTED PRECONDITIONER

Reuse stokes
operators and
saddle point

preconditioners

[We use a full Lagrangian update of our mesh, with no remeshing]

16Sunday, December 4, 2011

Eigen-analysis plugin for solver design
Hydrostatic ice flow (nonlinear rheology and slip conditions)

−∇

[
η

(
4ux + 2vy uy + vx uz

uy + vx 2ux + 4vy vz

)]
+ ρg∇s = 0, (1)

Many solvers converge easily with no-slip/frozen bed, more difficult
for slippery bed (ISMIP HOM test C)
Geometric MG is good: λ ∈ [0.805,1] (SISC 2013)

(a) λ0 = 0.0268 (b) λ1 = 0.0409

Performance of assembled versus unassembled

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

Arithmetic intensity for Qp elements
< 1

4 (assembled), ≈ 10 (unassembled), & 5 (hardware)

store Jacobian information at Gauss quadrature points, can use AD

Hardware Arithmetic Intensity
Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product, residual & 8

Processor STREAM Triad (GB/s) Peak (GF/s) Balance (F/B)

E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
E5-2699v3 18-core 60 660 11
Blue Gene/Q node 29.3 205 7
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6

KNL (DRAM) 100 3000 30
KNL (MCDRAM) 500 3000 6

Q2 tensor product optimization
Reference gradient Dξ = [D̂⊗ B̂⊗ B̂, B̂⊗ D̂⊗ B̂, B̂⊗ B̂⊗ D̂]
∇ξ x = (Dξ ⊗ I3)(Ee⊗ I3)x (29%)
Invert 3×3 at quad. points: ∇xξ (7%)

Au = ∑
e∈Nel

E T
e︸︷︷︸

scatter accum

tensor 29%︷︸︸︷
DT

ξ
Λ
(

(∇xξ)T (ωη)(∇xξ)
)

︸ ︷︷ ︸
independent at quadrature points 6%

tensor 29%︷︸︸︷
Dξ Ee︸︷︷︸

gather

u

Pack 4 elements at a time in vector-friendly ordering
Intrinsics, 30% of peak AVX (SNB) and FMA (Haswell)
Similar structure in HPGMG-FE (https://hpgmg.org)

Operator Flops Pessimal Cache Perfect Cache Time GF/s
Bytes F/B Bytes F/B (ms)

Assembled 9216 — — 37248 0.247 42 113
Matrix-free 53622 2376 22.5 1008 53 22 651
Tensor 15228 2376 6.4 1008 15 4.2 1072
Tensor C 14214 5832 2.4 4920 2.9 — —

https://hpgmg.org

Continental rifting

Rifting Video
[May, Brown, Le Pourhiet (SC14)]

Sparse linear algebra is dead (long live sparse . . .)

Arithmetic intensity < 1/4

Idea: multiple right hand sides

(2k flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
, k � avg. nz/row

Problem: popular algorithms have nested data dependencies
Time step

Nonlinear solve
Krylov solve

Preconditioner/sparse matrix

Cannot parallelize/vectorize these nested loops
Can we create new algorithms to reorder/fuse loops?

Reduce latency-sensitivity for communication
Reduce memory bandwidth (reuse matrix while in cache)

Sparse linear algebra is dead (long live sparse . . .)

Arithmetic intensity < 1/4

Idea: multiple right hand sides

(2k flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
, k � avg. nz/row

Problem: popular algorithms have nested data dependencies
Time step

Nonlinear solve
Krylov solve

Preconditioner/sparse matrix

Cannot parallelize/vectorize these nested loops
Can we create new algorithms to reorder/fuse loops?

Reduce latency-sensitivity for communication
Reduce memory bandwidth (reuse matrix while in cache)

Runge-Kutta methods

u̇ = F(u)y1
...

ys

︸ ︷︷ ︸

Y

= un + h

a11 · · · a1s
...

. . .
...

as1 · · · ass

︸ ︷︷ ︸

A

F

y1
...

ys

un+1 = un + bT Y

General framework for one-step methods
Diagonally implicit: A lower triangular, stage order 1 (or 2 with
explicit first stage)
Singly diagonally implicit: all Aii equal, reuse solver setup, stage
order 1
If A is a general full matrix, all stages are coupled, “implicit RK”

Method of Butcher (1976) and Bickart (1977)
Newton linearize Runge-Kutta system at u∗

Y = un + hAF(Y)
[
Is⊗ In + hA⊗ J(u∗)

]
δY = RHS

Solve linear system with tensor product operator

Ĝ = S⊗ In + Is⊗ J

where S = (hA)−1 is s× s dense, J =−∂F(u)/∂u sparse
SDC (2000) is Gauss-Seidel with low-order corrector
Butcher/Bickart method: diagonalize S = XΛX−1

Λ⊗ In + Is⊗ J
s decoupled solves
Complex eigenvalues (overhead for real problem)

Problem: X is exponentially ill-conditioned wrt. s
We avoid diagonalization

Permute Ĝ to reuse J: G = In⊗S + J⊗ Is
Stages coupled via register transpose at spatial-point granularity
Same convergence properties as Butcher/Bickart

MatTAIJ: “sparse” tensor product matrices

G = In⊗S + J⊗T

J is parallel and sparse, S and T are small and dense

More general than multiple RHS (multivectors)

Compare J⊗ Is to multiple right hand sides in row-major

Runge-Kutta systems have T = Is (permuted from Butcher method)

Stream J through cache once, same efficiency as multiple RHS

Unintrusive compared to spatial-domain vectorization or s-step

Multigrid for Implicit Runge-Kutta: Diffusion

Prolongation: P⊗ Is
Coarse operator: In⊗S + (RJP)⊗ Is
Larger time steps

GMRES(2)/point-block Jacobi smoothing

FGMRES outer

Method order nsteps Krylov its. (Average)

Gauss 1 2 16 82 (5.1)
Gauss 2 4 8 64 (8)
Gauss 4 8 4 44 (11)
Gauss 8 16 2 42 (21)

IMEX time integration in PETSc
Additive Runge-Kutta IMEX methods

G(t,x , ẋ) = F(t,x)

Jα = αGẋ + Gx

User provides:
FormRHSFunction(ts,t,x,F,void *ctx);
FormIFunction(ts,t,x,ẋ,G,void *ctx);
FormIJacobian(ts,t,x,ẋ,α,J,Jp,mstr,void *ctx);

Can have L-stable DIRK for stiff part G, SSP explicit part, etc.
Orders 2 through 5, embedded error estimates
Dense output, hot starts for Newton
More accurate methods if G is linear, also Rosenbrock-W
Can use preconditioner from classical “semi-implicit” methods
FAS nonlinear solves supported
Extensible adaptive controllers, can change order within a family
Easy to register new methods: TSARKIMEXRegister()

Single step interface so user can have own time loop
Same interface for Extrapolation IMEX, LMS IMEX (in development)

τ corrections

Plane strain elasticity, E = 1000,ν = 0.4 inclusions in
E = 1,ν = 0.2 material, coarsen by 32.
Solve initial problem everywhere and compute
τH

h = AH ÎH
h uh− IH

h Ahuh

Change boundary conditions and solve FAS coarse problem

NH úH = IH
h f́ h︸︷︷︸
f́ H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

Prolong, post-smooth, compute error eh = úh− (Nh)−1 f́ h

Coarse grid with τ is nearly 10× better accuracy

τ corrections

Plane strain elasticity, E = 1000,ν = 0.4 inclusions in
E = 1,ν = 0.2 material, coarsen by 32.
Solve initial problem everywhere and compute
τH

h = AH ÎH
h uh− IH

h Ahuh

Change boundary conditions and solve FAS coarse problem

NH úH = IH
h f́ h︸︷︷︸
f́ H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

Prolong, post-smooth, compute error eh = úh− (Nh)−1 f́ h

Coarse grid with τ is nearly 10× better accuracy

Low communication MG

red arrows can be removed by
τ-FAS with overlap

blue arrows can also be removed,
but then algebraic convergence
stalls when discretization error is
reached

no simple way to check that
discretization error is obtained

if fine grid state is not stored, use
compatible relaxation to complete
prolongation P

“Segmental refinement” by Achi
Brandt (1977)

2-process case by Brandt and
Diskin (1994)

Segmental refinement: no horizontal communication
27-point second-order stencil, manufactured analytic solution
5 SR levels: 163 cells/process local coarse grid
Overlap = Base + (L− `)Increment

Implementation requires even number of cells—round down.
FMG with V (2,2) cycles

Table: ‖eSR‖∞
/‖eFMG‖∞

Base
Increment 1 2 3

1 1.59 2.34 1.00
2 1.00 1.00 1.00
3 1.00 1.00 1.00

16 128 1024 8192 65536
0

5

10

15

20

25

cores (Edison)

T
im

e

Solve times: Laplacian, u=(x
4
 − L

2
 x

2
), L=(2,1,1) (8 solves)

1 F−cycle w/ V(2,2), 128
3
 cells/core, 8 solves − non−redundant CGS

1 F−cycle w/ V(2,2), 128
3
 cells/core, 8 solves − SR, non−redundant CGS

V(2,2) cycles, 128
3
 cells, rtol=10.

−4
, 8 solves, non−redundant CGS

1 F−cycle w/ V(2,2), N=32/core, 512 solves − redundant CGS
1 F−cycle w/ V(2,2), N=32/core, 512 solves − non−redundant CGS
1 F−cycle w/ V(2,2), N=32/core, 512 solves − SR, non−redundant CGS

Adams, Brown, Knepley, Samtaney arXiv:1406.7808

Nonlinear and matrix-free smoothing
matrix-based smoothers require global linearization
nonlinearity often more efficiently resolved locally
nonlinear additive or multiplicative Schwarz
nonlinear/matrix-free is good if

C =
(cost to evaluate residual at one “point”) ·N

(cost of global residual)
∼ 1

finite difference: C < 2
finite volume: C ∼ 2, depends on reconstruction
finite element: C ∼ number of vertices per cell

larger block smoothers help reduce C
additive correction (Jacobi/Chebyshev/multi-stage)

global evaluation, as good as C = 1
but, need to assemble corrector/scaling
need spectral estimates or wave speeds

Multiscale compression and recovery using τ form

`fine

`cp + 1

`cp

.

`cp

`cp + 1

`fine

CP

R
es

tr
ic

tSolve F(un;bn) = 0

next solve

bn+1(un,bn)bn

CP

CR CR

`fine

CR

`fineτ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

FMG Recovery

checkpoint converged coarse state
recover using FMG anchored at `cp + 1
needs only `cp neighbor points
τ correction is local

Normal multigrid cycles visit all levels moving from n→ n + 1

FMG recovery only accesses levels finer than `CP

Only failed processes and neighbors participate in recovery

Lightweight checkpointing for transient adjoint computation

Postprocessing applications, e.g., in-situ visualization at high
temporal resolution in part of the domain

HPGMG-FE https://hpgmg.org

Titan >200ms

v
a
r
ia

b
ilit

y
1.6B

155B

309B
12.9B

https://hpgmg.org

Outlook
Many more applications

subsurface, aerospace, engines, plasma, atmosphere/ocean,
nuclear materials engineering, biological fluids and solvation

Keep science objectives firmly in the driver’s seat
Do not compromise discretization quality
Optimize convergence first, then implementation efficiency
Library design: create maximally reusable components
Users want performance versatility

fast solution on supercomputer
high-resolution on small workstation/cluster

Robustness is always a challenge
Huge scope remains at problem formulation
Algorithmic optimality is crucial
Real problems are messy
Performance is always messy at scale
Ideas are easy, implementation and practical issues are hard
Maximize science per Watt

HPC Performance Modeling and Analysis

Spring 2015, Special Topics

Architectural roadmaps and modeling

Performance variability

Designing performance experiments

Application case studies
Target audience:

Advanced undergraduate and graduate students in Computer
Science
Graduate students in simulation-based science or engineering

jed@jedbrown.org

jed@jedbrown.org

