Exploiting structure in scientific computing

This talk: http://59A2.org/files/20141211-Structure.pdf

Jed Brown jed@jedbrown.org (ANL and CU Boulder)

CU Boulder, 2014-12-11

PETSc

- Portable Extensible Toolkit for Scientific computing
- Jed: User since 2004, developer since 2008
- Known for parallel (differential) algebraic solvers
- TAO: Toolbox for Advanced Optimization
- Used by many open source libraries and applications
- Deployment mechanism for algorithm development
- Industry: Abaqus, Boeing, Schlumberger, Shell, etc.
- Awards
 - 3 Gordon Bell Prizes have used PETSc (1999, 2003, 2004)
 - R&D100, E.O. Lawrence Award, SIAM/ACM CS&E Prize

This talk

- Implicitness: multiple time scales
- Coupling for multi-physics
- Multigrid solvers
- Parallelism and efficiency

State of implicitness

- Nature has many spatial and temporal scales
 - Porous media, structures, fluids, kinetics
 - Quasi-equilibrium processes
- Science/engineering problem statement does not weak scale

More time steps required at higher resolution

- Robust discretizations and implicit solvers are needed to cope
- Computer architecture is increasingly hierarchical
 - algorithms should conform to this structure
- Sparse matrices are comfortable, but outdated
 - Algebraic multigrid, factorization
 - Memory bandwidth-limited
- "black box" solvers are not sustainable: $\mathcal{O}(n^2)$ in 3D
 - optimal solvers must accurately handle all scales
 - optimality is crucial for large-scale problems
 - hardware puts up a spirited fight to abstraction

Model Coupling

$$f(u; v) = 0$$
$$g(v; u) = 0$$

■ f and g developed independently

The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - "parabolization" for stiff waves
- X Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

Δ

MomentumStokes Pressure

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

Boundary Layer

Ocean

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

Splitting for Multiphysics

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative] $\begin{bmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{bmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{bmatrix} A \\ 0 \end{bmatrix}^{-1} \begin{bmatrix} A \\$

Gauss-Seidel inspired, works when fields are loosely coupled
 Factorization: -pc_fieldsplit_type schur

$$\begin{bmatrix} A & B \\ S \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ CA^{-1} & 1 \end{bmatrix}^{-1}, \qquad S = D - CA^{-1}B$$

- robust (exact factorization), can often drop lower block
- how to precondition S which is usually dense?
 - interpret as differential operators, use approximate commutators
- "Composable Linear Solvers for Multiphysics" ISPDC 2012

Work in Split Local space, matrix data structures reside in any space.

Stokes + Implicit Free Surface

$$\begin{bmatrix} \eta D_{ij}(\boldsymbol{u}) \end{bmatrix}_{,j} - p_{,i} = f_i$$
$$u_{k,k} = 0$$
$$\hat{x}_i = \hat{x}_i^{t-\Delta t} + \Delta t \, u_i(\hat{x}_i)$$

COORDINATE RESIDUALS

$$F_x := -u_i + \frac{\hat{x}_i}{\Delta t} - \frac{\hat{x}_i^{t-\Delta}}{\Delta t}$$

[We use a full Lagrangian update of our mesh, with no remeshing]

"Drunken seaman", Rayleigh Taylor instability test case from Kaus et al., 2010. Dense, viscous material (yellow) overlying less dense, less viscous material (blue).

Eigen-analysis plugin for solver design

Hydrostatic ice flow (nonlinear rheology and slip conditions)

$$-\nabla \left[\eta \begin{pmatrix} 4u_x + 2v_y & u_y + v_x & u_z \\ u_y + v_x & 2u_x + 4v_y & v_z \end{pmatrix} \right] + \rho g \nabla s = 0, \quad (1)$$

- Many solvers converge easily with no-slip/frozen bed, more difficult for slippery bed (ISMIP HOM test C)
- Geometric MG is good: $\lambda \in [0.805, 1]$ (SISC 2013)

Performance of assembled versus unassembled

Arithmetic intensity for Q_p elements

■ < $\frac{1}{4}$ (assembled), ≈ 10 (unassembled), ≥ 5 (hardware)

store Jacobian information at Gauss quadrature points, can use AD

Hardware Arithmetic Intensity

Operation	Arithmetic Intensity (flops/B)
Sparse matrix-vector product	1/6
Dense matrix-vector product	1/4
Unassembled matrix-vector product, residual	\gtrsim 8

Processor	STREAM Triad (GB/s)	Peak (GF/s)	Balance (F/B)
E5-2680 8-core	38	173	4.5
E5-2695v2 12-core	45	230	5.2
E5-2699v3 18-core	60	660	11
Blue Gene/Q node	29.3	205	7
Kepler K20Xm	160	1310	8.2
Xeon Phi SE10P	161	1060	6.6
KNL (DRAM)	100	3000	30
KNL (MCDRAM)	500	3000	6

-

Q2 tensor product optimization

- $\blacksquare \text{ Reference gradient } \mathscr{D}_{\xi} = [\hat{D} \otimes \hat{B} \otimes \hat{B}, \hat{B} \otimes \hat{D} \otimes \hat{B}, \hat{B} \otimes \hat{B} \otimes \hat{D}]$
- Invert 3 × 3 at quad. points: $\nabla_x \xi$ (7%)

- Pack 4 elements at a time in vector-friendly ordering
- Intrinsics, 30% of peak AVX (SNB) and FMA (Haswell)
- Similar structure in HPGMG-FE (https://hpgmg.org)

Operator	Flops	Pessima	al Cache	Perfect	Cache	Time	GF/s
		Bytes	F/B	Bytes	F/B	(ms)	
Assembled	9216			37248	0.247	42	113
Matrix-free	53622	2376	22.5	1008	53	22	651
Tensor	15228	2376	6.4	1008	15	4.2	1072
Tensor C	14214	5832	2.4	4920	2.9	—	_

Continental rifting

Rifting Video

[May, Brown, Le Pourhiet (SC14)]

Sparse linear algebra is dead (long live sparse ...)

■ Arithmetic intensity < 1/4

Idea: multiple right hand sides

 $\frac{(2k \text{ flops})(\text{bandwidth})}{\text{sizeof}(\text{Scalar}) + \text{sizeof}(\text{Int})}, \quad k \ll \text{avg. nz/row}$

- Problem: popular algorithms have nested data dependencies
 - Time step
 Nonlinear solve
 Krylov solve
 Preconditioner/sparse matrix
- Cannot parallelize/vectorize these nested loops
- Can we create new algorithms to reorder/fuse loops?
 - Reduce latency-sensitivity for communication
 - Reduce memory bandwidth (reuse matrix while in cache)

Sparse linear algebra is dead (long live sparse ...)

■ Arithmetic intensity < 1/4

Idea: multiple right hand sides

 $\frac{(2k \text{ flops})(\text{bandwidth})}{\text{sizeof}(\text{Scalar}) + \text{sizeof}(\text{Int})}, \quad k \ll \text{avg. nz/row}$

- Problem: popular algorithms have nested data dependencies
 - Time step
 Nonlinear solve
 Krylov solve
 Preconditioner/sparse matrix
- Cannot parallelize/vectorize these nested loops
- Can we create new algorithms to reorder/fuse loops?
 - Reduce latency-sensitivity for communication
 - Reduce memory bandwidth (reuse matrix while in cache)

Runge-Kutta methods

$$\begin{array}{c}
\dot{u} = F(u) \\
\begin{pmatrix}
y_1 \\
\vdots \\
y_s
\end{pmatrix} = u^n + h \underbrace{\begin{bmatrix}
a_{11} & \cdots & a_{1s} \\
\vdots & \ddots & \vdots \\
a_{s1} & \cdots & a_{ss}\end{bmatrix}}_{A} F \begin{pmatrix}
y_1 \\
\vdots \\
y_s
\end{pmatrix} \\
u^{n+1} = u^n + b^T Y
\end{array}$$

- General framework for one-step methods
- Diagonally implicit: A lower triangular, stage order 1 (or 2 with explicit first stage)
- Singly diagonally implicit: all A_{ii} equal, reuse solver setup, stage order 1
- If A is a general full matrix, all stages are coupled, "implicit RK"

Method of Butcher (1976) and Bickart (1977)

Newton linearize Runge-Kutta system at u*

$$Y = u^{n} + hAF(Y) \qquad \left[I_{s} \otimes I_{n} + hA \otimes J(u^{*})\right] \delta Y = RHS$$

Solve linear system with tensor product operator

$$\hat{G} = S \otimes I_n + I_s \otimes J$$

where $S = (hA)^{-1}$ is $s \times s$ dense, $J = -\partial F(u)/\partial u$ sparse

SDC (2000) is Gauss-Seidel with low-order corrector

Butcher/Bickart method: diagonalize $S = X\Lambda X^{-1}$

s decoupled solves

Complex eigenvalues (overhead for real problem)

Problem: X is exponentially ill-conditioned wrt. s

We avoid diagonalization

Permute \hat{G} to reuse $J: G = I_n \otimes S + J \otimes I_s$

- Stages coupled via register transpose at spatial-point granularity
- Same convergence properties as Butcher/Bickart

MatTAIJ: "sparse" tensor product matrices

$$G=I_n\otimes S+J\otimes T$$

- \blacksquare *J* is parallel and sparse, *S* and *T* are small and dense
- More general than multiple RHS (multivectors)
- Compare $J \otimes I_s$ to multiple right hand sides in row-major
- Runge-Kutta systems have $T = I_s$ (permuted from Butcher method)
- Stream J through cache once, same efficiency as multiple RHS
- Unintrusive compared to spatial-domain vectorization or *s*-step

Multigrid for Implicit Runge-Kutta: Diffusion

Prolongation: $P \otimes I_s$

- Coarse operator: $I_n \otimes S + (RJP) \otimes I_s$
- Larger time steps
- GMRES(2)/point-block Jacobi smoothing
- FGMRES outer

Method	order	nsteps	Krylov its.	(Average)
Gauss 1	2	16	82	(5.1)
Gauss 2	4	8	64	(8)
Gauss 4	8	4	44	(11)
Gauss 8	16	2	42	(21)

IMEX time integration in PETSc

Additive Runge-Kutta IMEX methods

 $G(t, x, \dot{x}) = F(t, x)$ $J_{\alpha} = \alpha G_{\dot{x}} + G_{x}$

User provides:

- FormRHSFunction(ts,t,x,F,void *ctx);
- FormIFunction(ts, t, x, \dot{x}, G ,void *ctx);
- FormIJacobian(ts,t,x,x,α,J,J_p,mstr,void *ctx);
- Can have *L*-stable DIRK for stiff part *G*, SSP explicit part, etc.
- Orders 2 through 5, embedded error estimates
- Dense output, hot starts for Newton
- More accurate methods if G is linear, also Rosenbrock-W
- Can use preconditioner from classical "semi-implicit" methods
- FAS nonlinear solves supported
- Extensible adaptive controllers, can change order within a family
- Easy to register new methods: TSARKIMEXRegister()
- Single step interface so user can have own time loop
- Same interface for Extrapolation IMEX, LMS IMEX (in development)

Δ

au corrections

- Plane strain elasticity, E = 1000, v = 0.4 inclusions in
 - E = 1, v = 0.2 material, coarsen by 3^2 .
- Solve initial problem everywhere and compute $\tau_h^H = A^H \hat{I}_h^H u^h I_h^H A^h u^h$
- Change boundary conditions and solve FAS coarse problem

$$N^{H}\dot{u}^{H} = \underbrace{I_{h}^{H}\dot{f}^{h}}_{\dot{f}^{H}} + \underbrace{N^{H}\hat{I}_{h}^{H}\tilde{u}^{h} - I_{h}^{H}N^{h}\tilde{u}^{h}}_{\tau_{h}^{H}}$$

- Prolong, post-smooth, compute error $e^h = \acute{u}^h (N^h)^{-1}\acute{t}^h$
- Coarse grid with au is nearly 10× better accuracy

au corrections

- Plane strain elasticity, E = 1000, v = 0.4 inclusions in
 - E = 1, v = 0.2 material, coarsen by 3^2 .
- Solve initial problem everywhere and compute $\tau_h^H = A^H \hat{I}_h^H u^h I_h^H A^h u^h$
- Change boundary conditions and solve FAS coarse problem

$$N^{H}\dot{u}^{H} = \underbrace{I_{h}^{H}\dot{f}^{h}}_{\dot{f}^{H}} + \underbrace{N^{H}\hat{I}_{h}^{H}\tilde{u}^{h} - I_{h}^{H}N^{h}\tilde{u}^{h}}_{\tau_{h}^{H}}$$

- Prolong, post-smooth, compute error $e^h = \dot{u}^h (N^h)^{-1} \dot{f}^h$
- Coarse grid with τ is nearly 10× better accuracy

Low communication MG

- red arrows can be removed by *τ*-FAS with overlap
- blue arrows can also be removed, but then algebraic convergence stalls when discretization error is reached
- no simple way to check that discretization error is obtained
- if fine grid state is not stored, use compatible relaxation to complete prolongation P
- "Segmental refinement" by Achi Brandt (1977)
- 2-process case by Brandt and Diskin (1994)

Segmental refinement: no horizontal communication

- 27-point second-order stencil, manufactured analytic solution
- 5 SR levels: 16³ cells/process local coarse grid
- Overlap = Base + $(L \ell)$ Increment

Implementation requires even number of cells—round down.

■ FMG with V(2,2) cycles

Adams, Brown, Knepley, Samtaney arXiv:1406.7808

Δ

Nonlinear and matrix-free smoothing

- matrix-based smoothers require global linearization
- nonlinearity often more efficiently resolved locally
- nonlinear additive or multiplicative Schwarz
- nonlinear/matrix-free is good if

 $C = \frac{(\text{cost to evaluate residual at one "point"}) \cdot N}{(\text{cost of global residual})} \sim 1$

- finite difference: C < 2
- finite volume: $C \sim 2$, depends on reconstruction
- finite element: C ~ number of vertices per cell
- Iarger block smoothers help reduce C
- additive correction (Jacobi/Chebyshev/multi-stage)
 - global evaluation, as good as C = 1
 - but, need to assemble corrector/scaling
 - need spectral estimates or wave speeds

Multiscale compression and recovery using au form

- Normal multigrid cycles visit all levels moving from $n \rightarrow n+1$
- FMG recovery only accesses levels finer than ℓ_{CP}
- Only failed processes and neighbors participate in recovery
- Lightweight checkpointing for transient adjoint computation
- Postprocessing applications, e.g., in-situ visualization at high temporal resolution in part of the domain

HPGMG-FE https://hpgmg.org

Δ

Outlook

- Many more applications
 - subsurface, aerospace, engines, plasma, atmosphere/ocean, nuclear materials engineering, biological fluids and solvation
- Keep science objectives firmly in the driver's seat
- Do not compromise discretization quality
- Optimize convergence first, then implementation efficiency
- Library design: create maximally reusable components
- Users want performance versatility
 - fast solution on supercomputer
 - high-resolution on small workstation/cluster
- Robustness is always a challenge
- Huge scope remains at problem formulation
- Algorithmic optimality is crucial
- Real problems are messy
- Performance is always messy at scale
- Ideas are easy, implementation and practical issues are hard
- Maximize science per Watt

HPC Performance Modeling and Analysis

- Spring 2015, Special Topics
- Architectural roadmaps and modeling
- Performance variability
- Designing performance experiments
- Application case studies
- Target audience:
 - Advanced undergraduate and graduate students in Computer Science
 - Graduate students in simulation-based science or engineering
- jed@jedbrown.org