

IMPLICIT SOLUTION OF LOCALIZED NONLINEARITIES

Localized nonsmooth processes play a leading role in many geophysical problems, e.g.,

- plastic yielding, fracture
- frictional contact: faults, sub-glacial
- contact/collisions: marine glaciers, sedimentation
- phase change: ice/water/steam, magma

If the effects are primarily *local* (e.g., wetting and drying in coastal inundation), the nonsmoothness can be treated explicitly. But long-range stress transmission is instantaneous on the time scales of most geophysical problems, necessitating *implicit* treatment if time steps are to be chosen based on accuracy rather than stability.

NONLINEAR SOLVERS

The prevailing nonlinear solution algorithms are based on global linearization, using either Newton or Picard iteration.

$$F(u) = 0$$

Solve: $J(u)v = -F(u), \quad u \leftarrow u + v$
where $J(u) \approx \nabla_u F(u)$

- Each iteration requires a global linear solve (e.g., Krylov-Multigrid).
- Each iteration moves important information over large distances.
- Superlinear convergence not realized for nonsmooth problems.
- The number of iterations depends on the strength of the nonlinearity.

MODEL PROBLEM: p-LAPLACIAN WITH FRICTION

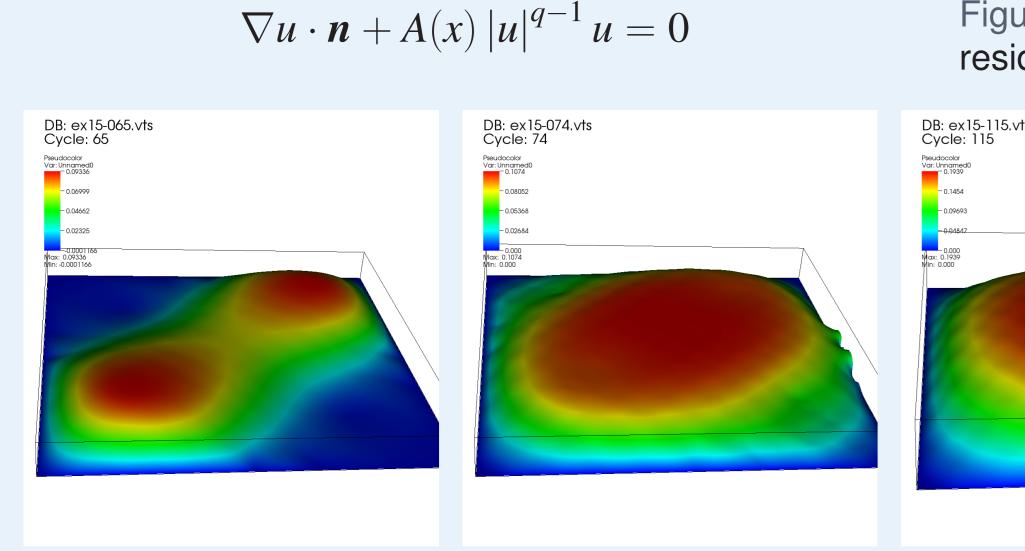
2-dimensional model problem for power-law fluid cross-section, $1 \leq \mathfrak{p} \leq \infty$

$$-\nabla \cdot (\eta \nabla u) - f = 0$$

$$\gamma(u) = \frac{1}{2} |\nabla u|^2$$

Friction boundary condition, $0 \le q \le 1$

 $\eta(\gamma) = \gamma_0(x)(\epsilon^2 + \gamma)^{\frac{\mathfrak{p}-2}{2}}$

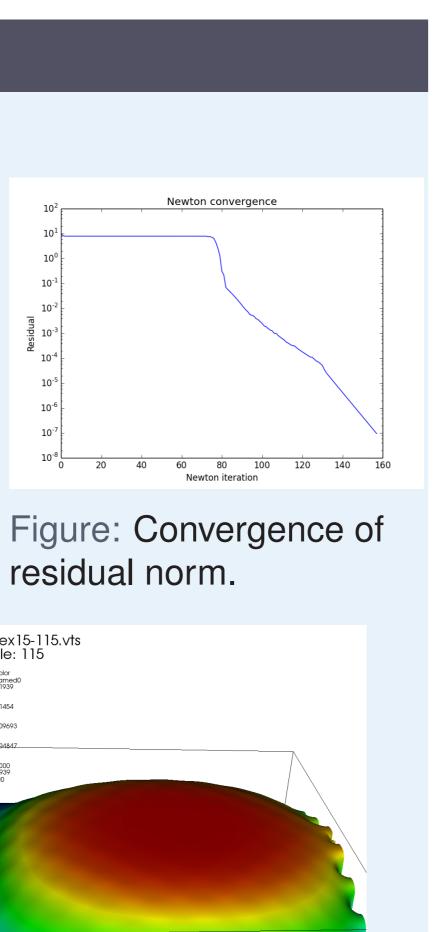


(a) It 65 (b) It 74 Figure: Convergence of heterogeneous $\mathfrak{p} = 1.3$, $\gamma_0 \in [10^{-2}, 1]$ with q = 0.2 friction at right boundary.

τ -adaptivity for nonsmooth processes in heterogeneous media DI11A-4256

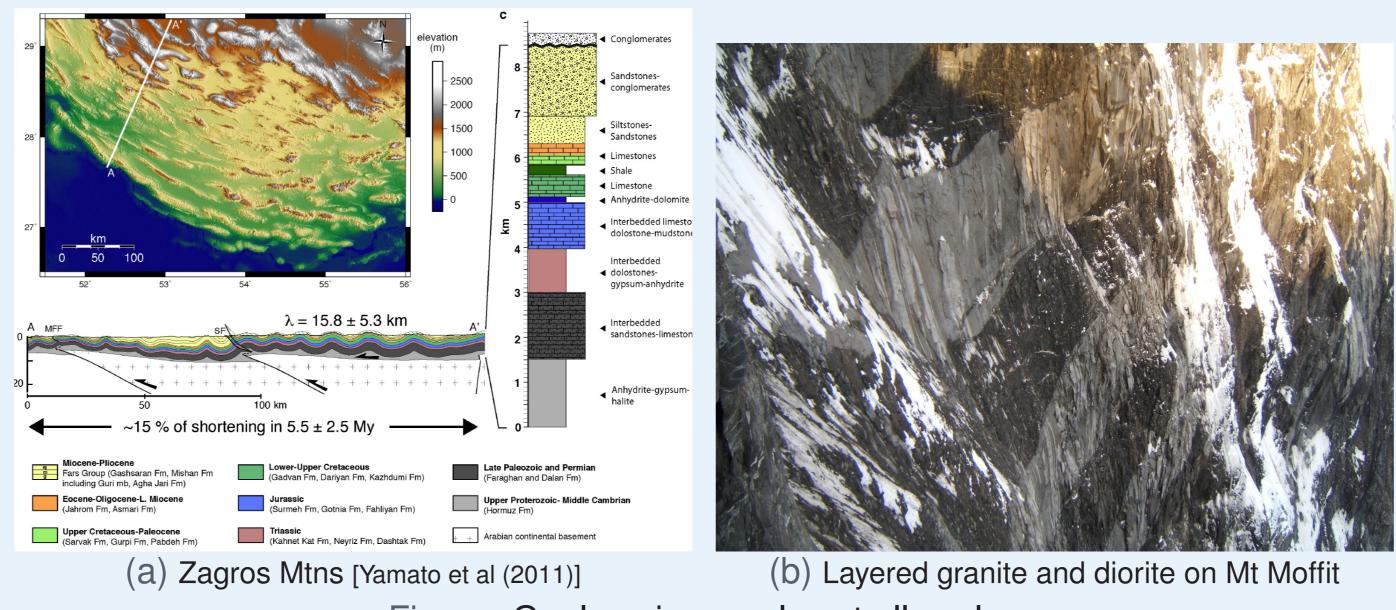
Jed Brown jed@jedbrown.org ANL and CU Boulder

Download this poster from https://jedbrown.org/files/20141215-AGUTauAdaptivity.pdf



(C) It 115

HETEROGENEOUS MEDIA: THE BANE OF ADAPTIVE MESH REFINEMENT



Adaptive spatial discretizations coarsen where acceptable accuracy can

- be achieved on coarse grids.
- Heterogeneous media requires high resolution throughout the domain.

Full Approximation Scheme and τ corrections

The Full Approximation Scheme is a naturally nonlinear multigrid algorithm that allows flexible incorporation of multilevel information. classical formulation: "coarse grid accelerates fine grid solution" ightarrow au formulation: "fine grid improves accuracy of coarse grid"

- To solve Nu = f, recursively apply
 - pre-smooth $\tilde{u}^h \leftarrow S^h_{\text{pre}}(u^h_0, f^h)$

correction and post-smooth $u^h \leftarrow S^h_{\text{post}} \left(\tilde{u}^h + I^h_H (u^H - \hat{I}^H_h \tilde{u}^h), f^h \right)$

 \hat{I}_{h}^{H} residual restriction solution interpolation $f^H = I_h^H f^h$ restricted forcing $\{S_{pre}^{h}, S_{post}^{h}\}$ smoothing operations on the fine grid

• At convergence, $u^{H*} = \hat{I}_h^H u^{h*}$ solves the τ -corrected coarse grid equation $N^{H}u^{H} = f^{H} + \tau_{h}^{H}$, thus τ_{h}^{H} is the "fine grid feedback" that makes the coarse grid equation accurate.

REMOVING DATA DEPENDENCIES WITH SEGMENTAL REFINEMENT Solve times: Laplacian, $u=(x^4 - L^2 x^2)$, L=(2,1,1) (8 solves) · - ← · 1 F-cycle w/ V(2,2), 128³ cells/core, 8 solves - non-redundant CGS Initial Coarse • • 1 F-cycle w/ V(2,2), 128³ cells/core, 8 solves - SR, non-redundant CGS - - V(2,2) cycles, 128³ cells, rtol=10.⁻⁴, 8 solves, non-redundant CGS ---- 1 F-cycle w/ V(2,2), N=32/core, 512 solves - redundant CGS •••• 1 F-cycle w/ V(2,2), N=32/core, 512 solves - non-redundant CGS I F-cycle w/ V(2,2), N=32/core, 512 solves – SR, non-redundant CGS

8192

Introduce overlap to avoid horizontal communication in fine-grid visits. [1]

1024

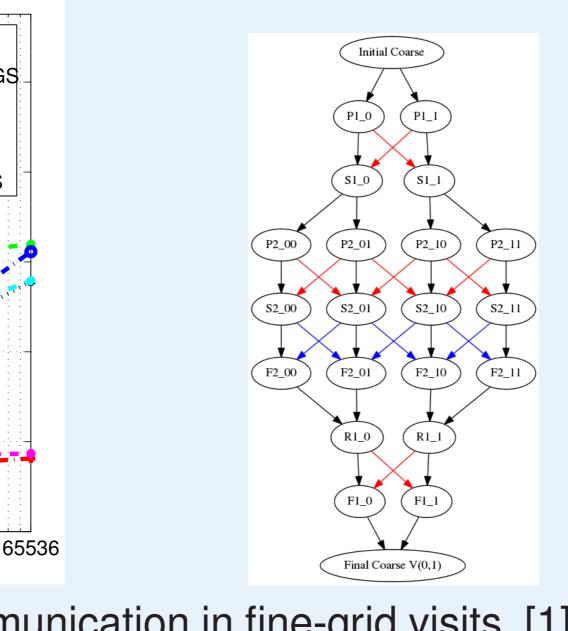
cores (Edison)

128

Figure: Geology is complex at all scales

solve coarse problem for u^H $N^H u^H = \underbrace{I_h^H f^h}_{cH} + \underbrace{N^H \hat{I}_h^H \tilde{u}^h - I_h^H N^h \tilde{u}^h}_{H}$

solution restriction



τ -ADAPTIVITY

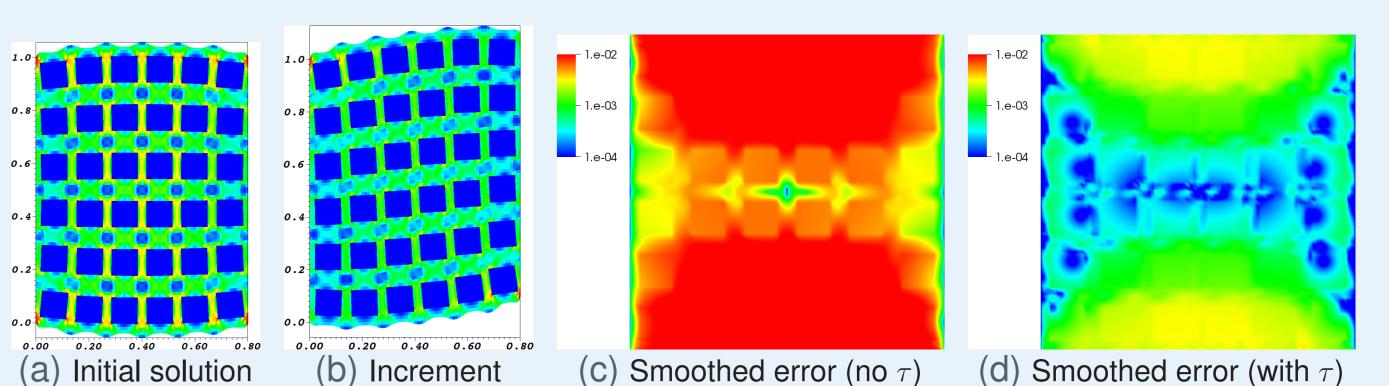


Figure: Heterogeneous strain test using 2-level multigrid with coarsening factor of 3^2 . The coarse (respectively fine) grid has 3 (9) Q_1 elements across each block and 2 (6) elements across each gap. Panes (a) and (b) show the deformed body colored by strain. The initial problem of compression by 0.2 from the right is solved (a) and $\tau = A^H \hat{I}_h^H u^h - I_h^H A^h u^h$ is computed. Then a shear increment of 0.1 in the y direction is added to the boundary condition, and the coarse-level problem is resolved, interpolated to the fine-grid, and a post-smoother is applied. When the coarse problem is solved without a τ correction (c), the displacement error is nearly $10 \times$ larger than when τ is included in the right hand side of the coarse problem (d).

Only visit fine grid where τ is "stale".

COMPARISON TO NONLINEAR DOMAIN DECOMPOSITION

- More local iterations in strongly nonlinear regions
- Many real nonlinearities are activated by long-range forces ► faults, friction, locking in granular media
- Two-stage algorithm has different load balancing Nonlinear subdomain solves
- Global linear solve
- ightarrow au adaptivity

STATUS

- Running proof of concept experiments
- Library implementation underway
- Need dynamic load balancing
- Need locally computable estimates for refreshing τ
- Robust local coarsening, perhaps GenEO [3, 4]

REFERENCES

- Mark F Adams, Jed Brown, Matt Knepley, and Samtaney.
- Segmental refinement: A multigrid technique for locality. submitted to SISC; arXiv preprint arXiv:1406.7
- X.C. Cai and D.E. Keyes.
- Nonlinearly preconditioned inexact Newton alg SIAM Journal on Scientific Computing, 24(1):1 2003
- N Spillane, V Dolean, P Hauret, et al. Abstract robust coarse spaces for systems of generalized eigenproblems in the overlaps. NuMa-Report, 7:2007, 2011.

ASPIN (Additive Schwarz preconditioned inexact Newton) [2]

Each nonlinear iteration only propagates information locally

Minimum effort to communicate long-range information Nonlinearity sees effects as accurate as with global fine-grid feedback Fine-grid work always proportional to "interesting" changes

l Ravi	Pierre Jolivet, Frédéric Hecht, Frédéric Nataf, and Christophe Prud'homme.
for data	Scalable domain decomposition preconditioners for heterogeneous elliptic problems.
<i>7808</i> , 2014.	In Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis,
gorithms.	page 80. ACM, 2013.
183–200,	Achi Brandt. Multigrid techniques: 1984 guide with applications for fluid dynamics.
pdes via	Technical Report GMD-Studien Nr. 85, Gesellschaft fur Mathematik und Dataenverarbeitung, 1984.
	A. Brandt and B. Diskin. Multigrid solvers on decomposed domains. Contemporary Mathematics, 157:135–155, 1994.