
PETSc: Technical and social aspects of library
development

This talk: https://jedbrown.org/files/20160225-PETSc.pdf

Jed Brown jed@jedbrown.org (CU Boulder)
Satish Balay, Matt Knepley, Lois Curfman McInnes, Karl Rupp,

Barry Smith

Scientific Software Days, UT Austin, 2016-02-25

https://jedbrown.org/files/20160225-PETSc.pdf


Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran struggles with market share

I Status quo in many scientific software packages

I Why do we tolerate it?

I Is scientific software somehow different?



Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc



Review of library best practices

I Namespace everything
I headers, libraries, symbols (all of them)
I use static and visibiliy to limit exports

I Avoid global variables
I Avoid environment assumptions; don’t claim shared resources

I stdout, MPI_COMM_WORLD

I Document interface stability guarantees, upgrade path

I Binary interface stability

I User debuggability

I Documentation and examples

I Portable, automated test suite

I Flexible error handling

I Support



Compile-time configuration

I configuration in build system

I over-emphasis on “efficiency”
I templates are compile-time

I combinatorial number of variants

I compromises on-line analysis capability

I create artificial IO bottlenecks

I offloads complexity to scripts and “workflow” tools

I limits automation and testing of calibration

I maintaining consistency complicates provenance

I PETSc Fail: mixing real/complex, 32/64-bit int



Choose dependencies wisely, but practically

I Licenses
I PETSc has a permissive license (BSD-2); anything more

restrictive must be optional
I ParMETIS license prohibits modification and redistribution
I But bugs don’t get fixed, even with patches and reproducible tests
I Result: several packages now carry patched versions of

ParMETIS – license violation and namespace collision
I Parallel ILU from Hypre

I Users Manual says PILUT is deprecated – use EUCLID
I EUCLID has memory errors, evidently not supported
I Repository is closed; PETSc doesn’t have resources to maintain
I Tough luck for users

I Encapsulation is important to control complexity

I Reconfiguring indirect dependencies breaks encapsulation
I Single library may be used by multiple components in executable

I diamond dependency graph
I conflict unless same version/configuration can be used for both



Packaging and distribution

I Developers underestimate challenge of installing software

I User experience damaged even when user’s fault (broken
environment)

I Package managers (Debian APT, RedHat RPM, MacPorts,
Homebrew, etc.)

I Binary interface stability critical to packagers

I PETSc has made changes to install schema to help packagers



Support: petsc-users mailing list

I 964 emails in 2006→ 3947 emails in 2014

I Also have petsc-dev and petsc-maint
I Hard to tell at first contact if user is worth helping

I Lots of work
I Success stories are very satisfying

I 12 contributors in 2006–2007, 46 contributors in 2015



User modifications versus plugins

I Fragmentation is expensive and should be avoided

I Maintaining local modifications causes divergence

I Better to contain changes to a plugin

I dlopen() and register implementations in the shared library
I Invert dependencies and avoid loops

I libB depends on libA
I want optional implementation of libA that uses libB
I libA-plugin depends on both libA and libB

I Static libraries are anti-productive (tell your computing center)
I Can sort-of do plugins with link line shenanigans
I Still no reliable and ubiquitous way to handle transitive

dependencies



Controlling the Binary interface

I Recompiling code is wasted productivity

I Implementation concerns (private variables, new virtual methods)
should not require recompiling user code

I PETSc uses opaque pointers and the “delegator” (aka. “pointer to
implementation”) pattern.

I Static function overhead insignificant, incremental cost less than
2 cycles

I Better for debugging

I Easier to expose libraries to dynamic programming languages



Upstreaming and community building

I Maintainers should provide good alternatives to forking

I Welcoming environment for contributions
I Empower users – all major design decisions discussed in public

I cf. Harvey Birdman Rule of copyleft-next
I Privacy, “scooping”, openness

I My opinion: social problem, deal with using social means

I Major tech companies have grossly underestimated cost of
forking

I In science, we cannot pay off technical debt incurred by forking

I Provide extension points to reduce cost of new development



Workflow ideals

I ’master’ is always stable and ready to release

I features are complete and tested before appearing in ’master’

I commits are minimal logically coherent, reviewable, and testable
units

I related commits go together so as to be reviewable and
debuggable by specialist

I new development is not disrupted by others’ features and bugs

I rapid collaboration between developers possible

I git log --first-parent maint..master reads like a
changelog

I bugs can be fixed once and anyone that needs the fix can obtain
it without side-effects



Simplified gitworkflows(7)

merges to be discarded when ‘next’ is rewound at next release

reviewed, thought 
to be complete test periods overlap

“graduation”
merged with 
evidence of stability

typical feature branch

v1.0 v2.0

v2.1

time

first-parent history of branch

maint

master..

.feature did not 
graduate for v2.0

.

.

. merge in first-parent history of ‘master’ or ‘maint’ (approximate “changelog”)

. merge to branch ‘next’ (discarded after next major release)

. commit in feature branch (feature branches usually start from ‘master’)

next

. .

. .

fix issue found by 
external client

.

.

.

.

. . .

risky feature

.

‘master’ contains 
‘maint’

.
‘next’ contains 
‘master’

latest feature 
release

maintenance 
release

testing and “eager” users,
bugs here only affect 
integration, not development

merge history (not first-parent)

. commit in bug-fix branch (bug-fix branches usually start from ‘maint’ or earlier)

testing & users

bug fixes tested 
like features

bug fix
for release

review 
pull req

v3.0

upcoming feature release 
will be tagged on ‘master’

next
after each release, the old ‘next’ 
is discarded and recreated

‘master’ is a stable base for 
new features, always ready 
to release

‘maint’ contains latest 
feature release



Best practices
I Every branch has a purpose
I Distinguish integration branches from topic branches
I Do all development in topic branches

I git checkout -b my/feature-branch master
I Namespace your branches if working on a shared repository
I Merge integration branches “forward”

I maint-1→ maint→ master→ next
I git checkout -b my/bugfix-branch maint-1

I Write clear commit messages for reviewers and people trying to
debug your code

I Avoid excessive merging from upstream
I Always write a clear commit message explaining what is being

merged and why

I Always merge topic branches as non-fast-forward (merge
--no-ff)

I Gracefully retry if you lose a race to shared integration branch
I This maximizes utility of --first-parent history

https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-merging
https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-racy-integration


Messaging from threaded code

I Off-node messages need to be packed and unpacked

I Many MPI+threads apps pack in serial – bottleneck
I Extra software synchronization required to pack in parallel

I Formally O(logT ) critical path, T threads/NIC context
I Typical OpenMP uses barrier – oversynchronizes

I MPI_THREAD_MULTIPLE – atomics and O(T ) critical path

I Choose serial or parallel packing based on T and message
sizes?

I Hardware NIC context/core now, maybe not in future

I What is lowest overhead approach to message coalescing?



HPGMG-FV: flat MPI vs MPI+OpenMP (Aug 2014)

0.00	  

0.05	  

0.10	  

0.15	  

0.20	  

0.25	  

0.30	  

0.35	  

0.40	  

1	   10	   100	   1,000	   10,000	   100,000	  

H
PG

M
G
-‐F
V
	  S
ol
ve
	  T
im

e	  
(s
ec
on

ds
)	  

NUMA	  Nodes	  (2M	  DOF/NUMA	  Node)	  

HPGMG-‐FV	  Solve	  Time	  
Mira	  

Edison	  

Hopper	  

Stampede(SNB)	  

Peregrine	  

K	  

Edison(Flat	  MPI)	  

K	  (Flat	  MPI)	  

Carver	  

I c/o Sam Williams



Exascale Science & Engineering Demands
I Model fidelity: resolution, multi-scale, coupling

I Transient simulation is not weak scaling: ∆t ∼∆x
I Analysis using a sequence of forward simulations

I Inversion, data assimilation, optimization
I Quantify uncertainty, risk-aware decisions

I Increasing relevance =⇒ external requirements on time
I Policy: 5 SYPD to inform IPCC
I Weather, manufacturing, field studies, disaster response

I “weak scaling” [. . . ] will increasingly give way to “strong scaling”
[The International Exascale Software Project Roadmap, 2011]

I ACME @ 25 km scaling saturates at < 10% of Titan (CPU) or
Mira

I Cannot decrease ∆x : SYPD would be too slow to calibrate
I “results” would be meaningless for 50-100y predictions, a “stunt

run”
I ACME v1 goal of 5 SYPD is pure strong scaling.

I Likely faster on Edison (2013) than any DOE machine –2020
I Many non-climate applications in same position.



Tim Palmer’s call for 1km (Nature, 2014)

I Would require 104 more total work than ACME target resolution
I 5 SYPD at 1km is like 75 SYPD at 15km, assuming infinite

resource and perfect weak scaling
I ACME currently at 3 SYPD with lots of work
I Two choices:

1. compromise simulation speed—this would come at a high price,
impacting calibration, data assimilation, and analysis; or

2. ground-up redesign of algorithms and hardware to cut latency by a
factor of 20 from that of present hardware

I DE Shaw’s Anton is an example of Option 2
I Models need to be constantly developed and calibrated

I custom hardware stifles algorithm/model innovation
I Exascale roadmaps don’t make a dent in 20x latency problem



Outlook

I Scientific software shouldn’t be “special”

I Usability is important

I Support requires debugging via email

I Defer all decisions to run time

I Plugins are wonderful for users and contributors

I Reviewing patches/educating contributors is a thankless task, but
crucial

I Application scaling mode must be scientifically relevant

I Versatility is needed for model coupling and advanced analysis

I Abstractions must be durable to changing scientific needs

I Plan for the known unknowns and the unknown unknowns

I The real world is messy!


