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Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.
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Firetran struggles with market share

I Status quo in many scientific software packages

I Why do we tolerate it?

I Is scientific software somehow different?



Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc



Review of library best practices

I Namespace everything
I headers, libraries, symbols (all of them)
I use static and visibiliy to limit exports

I Avoid global variables
I Avoid environment assumptions; don’t claim shared resources

I stdout, MPI_COMM_WORLD

I Document interface stability guarantees, upgrade path

I Binary interface stability

I User debuggability

I Documentation and examples

I Portable, automated test suite

I Flexible error handling

I Support



Compile-time configuration

I configuration in build system

I over-emphasis on “efficiency”
I templates are compile-time

I combinatorial number of variants

I compromises on-line analysis capability

I create artificial IO bottlenecks

I offloads complexity to scripts and “workflow” tools

I limits automation and testing of calibration

I maintaining consistency complicates provenance

I PETSc Fail: mixing real/complex, 32/64-bit int



Choose dependencies wisely, but practically

I Licenses
I PETSc has a permissive license (BSD-2); anything more

restrictive must be optional
I ParMETIS license prohibits modification and redistribution
I But bugs don’t get fixed, even with patches and reproducible tests
I Result: several packages now carry patched versions of

ParMETIS – license violation and namespace collision
I Parallel ILU from Hypre

I Users Manual says PILUT is deprecated – use EUCLID
I EUCLID has memory errors, evidently not supported
I Repository is closed; PETSc doesn’t have resources to maintain
I Tough luck for users

I Encapsulation is important to control complexity

I Reconfiguring indirect dependencies breaks encapsulation
I Single library may be used by multiple components in executable

I diamond dependency graph
I conflict unless same version/configuration can be used for both



Packaging and distribution

I Developers underestimate challenge of installing software

I User experience damaged even when user’s fault (broken
environment)

I Package managers (Debian APT, RedHat RPM, MacPorts,
Homebrew, etc.)

I Binary interface stability critical to packagers

I PETSc has made changes to install schema to help packagers



Support: petsc-users mailing list

I 964 emails in 2006→ 3947 emails in 2014

I Also have petsc-dev and petsc-maint
I Hard to tell at first contact if user is worth helping

I Lots of work
I Success stories are very satisfying

I 12 contributors in 2006–2007, 46 contributors in 2015



User modifications versus plugins

I Fragmentation is expensive and should be avoided

I Maintaining local modifications causes divergence

I Better to contain changes to a plugin

I dlopen() and register implementations in the shared library
I Invert dependencies and avoid loops

I libB depends on libA
I want optional implementation of libA that uses libB
I libA-plugin depends on both libA and libB

I Static libraries are anti-productive (tell your computing center)
I Can sort-of do plugins with link line shenanigans
I Still no reliable and ubiquitous way to handle transitive

dependencies



Controlling the Binary interface

I Recompiling code is wasted productivity

I Implementation concerns (private variables, new virtual methods)
should not require recompiling user code

I PETSc uses opaque pointers and the “delegator” (aka. “pointer to
implementation”) pattern.

I Static function overhead insignificant, incremental cost less than
2 cycles

I Better for debugging

I Easier to expose libraries to dynamic programming languages



Upstreaming and community building

I Maintainers should provide good alternatives to forking

I Welcoming environment for contributions
I Empower users – all major design decisions discussed in public

I cf. Harvey Birdman Rule of copyleft-next
I Privacy, “scooping”, openness

I My opinion: social problem, deal with using social means

I Major tech companies have grossly underestimated cost of
forking

I In science, we cannot pay off technical debt incurred by forking

I Provide extension points to reduce cost of new development



Workflow ideals

I ’master’ is always stable and ready to release

I features are complete and tested before appearing in ’master’

I commits are minimal logically coherent, reviewable, and testable
units

I related commits go together so as to be reviewable and
debuggable by specialist

I new development is not disrupted by others’ features and bugs

I rapid collaboration between developers possible

I git log --first-parent maint..master reads like a
changelog

I bugs can be fixed once and anyone that needs the fix can obtain
it without side-effects



Simplified gitworkflows(7)
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Best practices
I Every branch has a purpose
I Distinguish integration branches from topic branches
I Do all development in topic branches

I git checkout -b my/feature-branch master
I Namespace your branches if working on a shared repository
I Merge integration branches “forward”

I maint-1→ maint→ master→ next
I git checkout -b my/bugfix-branch maint-1

I Write clear commit messages for reviewers and people trying to
debug your code

I Avoid excessive merging from upstream
I Always write a clear commit message explaining what is being

merged and why

I Always merge topic branches as non-fast-forward (merge
--no-ff)

I Gracefully retry if you lose a race to shared integration branch
I This maximizes utility of --first-parent history

https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-merging
https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-racy-integration


Messaging from threaded code

I Off-node messages need to be packed and unpacked

I Many MPI+threads apps pack in serial – bottleneck
I Extra software synchronization required to pack in parallel

I Formally O(logT ) critical path, T threads/NIC context
I Typical OpenMP uses barrier – oversynchronizes

I MPI_THREAD_MULTIPLE – atomics and O(T ) critical path

I Choose serial or parallel packing based on T and message
sizes?

I Hardware NIC context/core now, maybe not in future

I What is lowest overhead approach to message coalescing?



HPGMG-FV: flat MPI vs MPI+OpenMP (Aug 2014)
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Exascale Science & Engineering Demands
I Model fidelity: resolution, multi-scale, coupling

I Transient simulation is not weak scaling: ∆t ∼∆x
I Analysis using a sequence of forward simulations

I Inversion, data assimilation, optimization
I Quantify uncertainty, risk-aware decisions

I Increasing relevance =⇒ external requirements on time
I Policy: 5 SYPD to inform IPCC
I Weather, manufacturing, field studies, disaster response

I “weak scaling” [. . . ] will increasingly give way to “strong scaling”
[The International Exascale Software Project Roadmap, 2011]

I ACME @ 25 km scaling saturates at < 10% of Titan (CPU) or
Mira

I Cannot decrease ∆x : SYPD would be too slow to calibrate
I “results” would be meaningless for 50-100y predictions, a “stunt

run”
I ACME v1 goal of 5 SYPD is pure strong scaling.

I Likely faster on Edison (2013) than any DOE machine –2020
I Many non-climate applications in same position.



Tim Palmer’s call for 1km (Nature, 2014)

I Would require 104 more total work than ACME target resolution
I 5 SYPD at 1km is like 75 SYPD at 15km, assuming infinite

resource and perfect weak scaling
I ACME currently at 3 SYPD with lots of work
I Two choices:

1. compromise simulation speed—this would come at a high price,
impacting calibration, data assimilation, and analysis; or

2. ground-up redesign of algorithms and hardware to cut latency by a
factor of 20 from that of present hardware

I DE Shaw’s Anton is an example of Option 2
I Models need to be constantly developed and calibrated

I custom hardware stifles algorithm/model innovation
I Exascale roadmaps don’t make a dent in 20x latency problem



Outlook

I Scientific software shouldn’t be “special”

I Usability is important

I Support requires debugging via email

I Defer all decisions to run time

I Plugins are wonderful for users and contributors

I Reviewing patches/educating contributors is a thankless task, but
crucial

I Application scaling mode must be scientifically relevant

I Versatility is needed for model coupling and advanced analysis

I Abstractions must be durable to changing scientific needs

I Plan for the known unknowns and the unknown unknowns

I The real world is messy!


