
Community building through software design
This talk:

https://jedbrown.org/files/20170221-SI2Community.pdf

Jed Brown jed@jedbrown.org (CU Boulder)
Collaborators: Barry Smith (ANL), Matt Knepley (Rice), Karl

Rupp (TU Wien), and the rest of the PETSc team
Thanks to: DOE, NSF, Intel

SI2 Meeting, 2017-02-21

https://jedbrown.org/files/20170221-SI2Community.pdf


Firetran!

I Renders HTML 10% faster than Firefox or Chrome.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page

I Open source, but private development



Firetran!

I Renders HTML 10% faster than Firefox or Chrome.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page

I Open source, but private development



Firetran!

I Renders HTML 10% faster than Firefox or Chrome.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page

I Open source, but private development



Firetran!

I Renders HTML 10% faster than Firefox or Chrome.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page

I Open source, but private development



Firetran!

I Renders HTML 10% faster than Firefox or Chrome.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page

I Open source, but private development



Firetran!

I Renders HTML 10% faster than Firefox or Chrome.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page

I Open source, but private development



Firetran!

I Renders HTML 10% faster than Firefox or Chrome.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page

I Open source, but private development



Firetran!

I Renders HTML 10% faster than Firefox or Chrome.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page

I Open source, but private development



Firetran!

I Renders HTML 10% faster than Firefox or Chrome.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page

I Open source, but private development



Firetran!

I Renders HTML 10% faster than Firefox or Chrome.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page

I Open source, but private development



Firetran struggles with market share

I Status quo in many scientific software packages

I Why do we tolerate it?

I Is scientific software somehow “different”?



Computational Science & Engineering Challenges

I Model fidelity: resolution, multi-scale, coupling
I Mathematical, computational, and modeling challenges
I Best software capability written with different assumptions
I Engages broader scientific and engineering community
I Transient simulation is not weak scaling: ∆t ∼∆x

I Analysis using a sequence of forward simulations
I Inversion, data assimilation, optimization, experimental design
I Quantify uncertainty, risk-aware decisions
I Many nested loops, challenge to expose parallelism or exploit

commonalities
I Increasing relevance =⇒ external requirements on time

I Policy: 5 SYPD to inform IPCC
I Weather, manufacturing, field studies, disaster response
I Mistakes become costly

I “weak scaling” [. . . ] will increasingly give way to “strong scaling”
[The International Exascale Software Project Roadmap, 2011]



Usability: Packaging and distribution

I Code must be portable – any compiler, any platform
I Need automatic tests to confirm
I Including quirky HPC systems, or equivalent environments

(containers)

I Developers underestimate challenge of installing software

I User experience damaged even when user’s fault (broken
environment)

I Package managers (Debian APT, RedHat RPM, MacPorts,
Homebrew, etc.)

I Binary interface stability critical to packagers



Compile-time configuration

I configuration in build system: ad-hoc public API

I over-emphasis on “efficiency”
I templates are compile-time

I combinatorial number of variants

I compromises on-line analysis capability

I create artificial IO bottlenecks

I offloads complexity to scripts and “workflow” tools

I limits automation and testing of calibration

I maintaining consistency complicates provenance

I PETSc Fail: mixing real/complex, 32/64-bit int



Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc



User modifications versus plugins

I Fragmentation is expensive and should be avoided

I Maintaining local modifications causes divergence

I Better to contain changes to a plugin

I dlopen() and register implementations in the shared library
I Invert dependencies and avoid loops

I libB depends on libA
I Want optional implementation of libA that uses libB
I libA-pluginB depends on both libA and libB
I libA loads its plugins at run-time

I Static libraries are anti-productive (tell your computing center)
I Can sort-of do plugins with link line shenanigans

I LDLIBS="-lB $(libA-config –libs)" dynamically search
and include plugins (and their dependencies)

I Constructor in libA-plugin* registers itself with libA
I cc -o app user-app.c -lB -lA-pluginB -lB -lA

I Still no reliable and ubiquitous way to handle transitive
dependencies



User-developer false dichotomy
the distinction between “users” and “developers” is actively
harmful — Matthew Turk (2013)

I A plugin architecture tricks library users into becoming developers

I Write code for yourself, then contribute to community
I Obstacles

I dirty, non-portable code
I unnecessary assumptions or ad-hoc problem-specific data

I Portable types and utility functions, enable compiler warnings
I Interfaces can encourage users to avoid bad dependencies

I Input arguments are same as library, have to do something to
directly access application data

I Fully custom extensions must also be possible

I Design for debuggability, document debugging tips

I Narrow vulnerability surface: input and output validation around
extension points



Upstreaming and community building

I Maintainers should provide good alternatives to forking

I Welcoming environment for contributions
I Empower users – all major design decisions discussed in public

I cf. Chatham House/“Harvey Birdman” Rule of copyleft-next
I https:
//github.com/richardfontana/hbr/blob/master/HBR.md

I Privacy, “scooping”, openness
I My opinion: social problem, deal with using social means

I Major tech companies have grossly underestimated cost of
forking

I In science, we cannot pay off technical debt incurred by forking

I Provide extension points to reduce cost of new development

https://github.com/richardfontana/hbr/blob/master/HBR.md
https://github.com/richardfontana/hbr/blob/master/HBR.md


Simplified gitworkflows(7)

merges to be discarded when ‘next’ is rewound at next release

reviewed, thought 
to be complete test periods overlap

“graduation”
merged with 
evidence of stability

typical feature branch

v1.0 v2.0

v2.1

time

first-parent history of branch

maint

master..

.feature did not 
graduate for v2.0

.

.

. merge in first-parent history of ‘master’ or ‘maint’ (approximate “changelog”)

. merge to branch ‘next’ (discarded after next major release)

. commit in feature branch (feature branches usually start from ‘master’)

next

. .

. .

fix issue found by 
external client

.

.

.

.

. . .

risky feature

.

‘master’ contains 
‘maint’

.
‘next’ contains 
‘master’

latest feature 
release

maintenance 
release

testing and “eager” users,
bugs here only affect 
integration, not development

merge history (not first-parent)

. commit in bug-fix branch (bug-fix branches usually start from ‘maint’ or earlier)

testing & users

bug fixes tested 
like features

bug fix
for release

review 
pull req

v3.0

upcoming feature release 
will be tagged on ‘master’

next
after each release, the old ‘next’ 
is discarded and recreated

‘master’ is a stable base for 
new features, always ready 
to release

‘maint’ contains latest 
feature release



Review of library best practices

I Namespace everything
I headers, libraries, symbols (all of them)
I use static and visibiliy to limit exports

I Avoid global variables
I Avoid environment assumptions; don’t claim shared resources

I stdout, MPI_COMM_WORLD

I Document interface stability guarantees, upgrade path

I Binary interface stability

I User debuggability

I Documentation and examples

I Portable, automated test suite

I Flexible error handling

I Support



Application, Framework, or Library?

I “I’m an end-user application. The top of the stack.”
I Wishful thinking much? Engineers script mouse clicks around

commercial GUI applications all the time.
I “Framework X is opinionated – it saves you time”

I It makes unwarranted assumptions about the environment
I Not to be confused with Good Defaults

I “You don’t put AMR into your application, you put your application
into AMR.”

yt is best thought of not as an application, but as a library
for asking and answering questions about data. — Matthew
Turk (2013)

I To embrace advanced analysis is to concede that higher levels
exist and will need to operate your code. A programmatic API is a
priority.



Choose dependencies wisely, but practically

I Licenses
I PETSc has a permissive license (BSD-2); anything more

restrictive must be optional
I ParMETIS license prohibits modification and redistribution
I But bugs don’t get fixed, even with patches and reproducible tests
I Result: several packages now carry patched versions of

ParMETIS – license violation and namespace collision
I Parallel ILU from Hypre

I Users Manual says PILUT is deprecated – use EUCLID
I EUCLID has memory errors, evidently not supported
I Repository is closed; PETSc doesn’t have resources to maintain
I Tough luck for users

I Encapsulation is important to control complexity

I Reconfiguring indirect dependencies breaks encapsulation
I Single library may be used by multiple components in executable

I diamond dependency graph
I conflict unless same version/configuration can be used for both



Support: petsc-users mailing list

I 964 emails in 2006→ 3947 emails in 2014

I Also have petsc-dev and petsc-maint
I Hard to tell at first contact if user is worth helping

I Lots of work
I Success stories are very satisfying

I 12 contributors in 2006–2007, 46 contributors in 2015



Verification and Validation

Verification without validation is sport; validation without
verification is magic. — Anthony Scopatz

I Verification: solving the equations right
I Manufactured solutions
I Mesh refinement studies
I Benchmarks for non-smooth/emergent behavior
I Can include in automated tests

I Validation: solving the right equations
I Comparison with observations
I Do we have good initial/boundary conditions?
I Data assimilation



Performance

I “We have to do it this way because of performance!”
I static memory allocation only (complexity bubbles up, prevents

composition)
I no indirect function calls (virtual functions, callbacks; prevents

extensibility)
I template specialization everywhere (huge binaries)

I “Implicit solvers don’t scale”
I Runs explicit diffusion instead
I Bystanders choke on Gordon Bell Reflux

I Granularity is key: minimize scope, but don’t over-reduce
I E.g., BLIS microkernel

I Lack of inlining hurts by spoiling vectorization more than anything

I Packing is very often an acceptable cost



End-to-end performance

I Education

I Preprocessing/custom implementation

I HPC Queue
I Execution time

I Solvers

I I/O

I Postprocessing/visualization



Credit

I Citations are academic currency
I Encourage citing some living document

I new developers can become authors
I PETSc criteria: when you provide support and maintenance for

your contributions

I Impossible to cite all transitive dependencies

I But important to cite those that matter, regardless of branding

I PetscCitationsRegister("@article..."). run with
-citations to see which modules were used.

I Decouple distribution from branding
I Some people insist on controlling distribution, for licensing or

branding reasons.
I Rare in practice: most would rather contribute upstream



Outlook

I Social aspects

I Licenses, CLA versus Developer Certificate of Origin

I Scientific software shouldn’t be “special”

I Usability is essential

I Plugins are wonderful for users, contributors,developers

I Just-in-time compilation is a useful abstraction

I Reviewing patches/educating contributors is a thankless task, but
crucial

I Plan for support, making your life easier also helps users

I Versatility is needed for model coupling and advanced analysis

I Abstractions must be durable to changing scientific needs

I Plan for the known unknowns and the unknown unknowns

I The real world is messy!



References

Jed Brown, Matthew G Knepley, and Barry F Smith.
Run-time extensibility and librarization of simulation software.
Computing in Science & Engineering, 17(1):38–45, 2015.

Matthew J Turk.
Scaling a code in the human dimension.
In Proceedings of the Conference on Extreme Science and Engineering Discovery
Environment: Gateway to Discovery, page 69. ACM, 2013.

Wolfgang Bangerth and Timo Heister.
What makes computational open source software libraries successful?
Computational Science & Discovery, 6(1):015010, 2013.

William D. Gropp.
Exploiting existing software in libraries: Successes, failures, and reasons why.
In Proceedings of the SIAM Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing, pages 21–29. SIAM, 1999.

Ulrich Drepper.
How to write shared libraries, 2002–2011.
http://www.akkadia.org/drepper/dsohowto.pdf.

http://www.akkadia.org/drepper/dsohowto.pdf

