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AMR shock-bubble with 4, 5, and 6 levels




What goes wrong?

BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
PID 17873 RUNNING AT joule

EXIT CODE: 139

CLEANING UP REMAINING PROCESSES

YOU CAN IGNORE THE BELOW CLEANUP MESSAGES

YOUR APPLICATION TERMINATED WITH THE EXIT STRING: Segmentation
fault (signal 11)

» Resubmit batch job, this time using more nodes.

> Tweak a refinement parameter.



On the last time step?

BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
PID 16824 RUNNING AT joule

EXIT CODE: 152

CLEANING UP REMAINING PROCESSES

YOU CAN IGNORE THE BELOW CLEANUP MESSAGES

YOUR APPLICATION TERMINATED WITH THE EXIT STRING: CPU time limit
exceeded (signal 24)

» Checkpoint more often?
» Need to wait through the queue again.



New computer
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Modeling

(response) = f(x) +.4#(0,02)

X user-relevant parameters
» Physics: bubble size, density, shock intensity
> Numerics: box size, max levels, refinement criteria
» Machine: # nodes, MPI/OpenMP, compilers
f Response
» CPU time
> Wall-clock time
» Peak memory usage
» Physics: A entropy, decay time

0, unbiased Gaussian noise



LOL Gaussian!
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Figure 1: Distribution of 50 HPL measurement results.
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Gaussian process regression

p(f(x) | X,y) ~ A (u,.0%)

W,=kK,y
0% =k — kK, k.
K, =K+oZl

where

|xi — x;|?
[K]j = k(xi, X;) = o7 exp <—'2€2/

in terms of hyperparameters ¢, G¢, Gp,.



Optimizing hyperparameters

The evidence provided by (X, y) in support of (¢, 6y, 0,) is quantified
by

1 _
X(E,Gf,ﬁn) = |Og,0(y | X,/,sz,ﬁﬁ) = 75 (yTKy1y+|0g|K,V’)+C

» Non-convex optimization problem

» Determinant |K,| due to normalization



Offline Active Learning

> Precompute database of features and responses
» Partition data (X, y) into Initial, Active, Test
> Compare many “trajectories” using different partitions

Algorithm

» Train GPR for each feature (e.g., cost and memory) in Initial set
> Repeat

1. Consult GPR models to select next observation from Active
2. Make that observation (incurring cost, etc.)
3. Retrain GPRs with new observation (including failure)



Selection procedure
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RandUniform MaxSigma MinPred RandGoodness
Candidate Selection in Active Learning

RandUniform Uniform random sampling
MaxSigma Choose candidate with largest uncertainty
MinPred Maximize Ogost/ Ucost
RandGoodness Probability density ~ Ocost/ Heost

RandGoodness with Memory Awarness As above, but exclude cases
that violate memory bound



Metrics

Accuracy
1
RMSE = /- eTe
NTest

where e = ‘uTest _ yTest
Cumulative Cost Total cost of selected experiments, including failures

Cumulative Regret Costs incurred attempting failures



Memory limits




Cumulative Regret by Algorithm

Cumulative Regret, node-hours
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Cumulative Regret by ninit

Cumulative Regret, node-hours
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RMSE vs Cumulative Cost

RMSE
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Active Learning Algorithm
= RandUniform == MinPred
— MaxSigma —— RandGoodness
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RMSE vs Cumulative Cost
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Outlook

Better measure of “risk” of exceeding memory bound
Domain-specific kernel functions

Non-Gaussian distributions

Online mode

Thanks to NERSC Edison and Cori, and to DOE ASCR
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