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2 Exascale Computing Project

• CEED is focused on the development of next-generation discretization software and algorithms 
to enable efcient simulations for a wide range of science applications on future HPC systems.

• Funding: $3.0M/year, 2 labs (LLNL, ANL), 5 universities

Goals & Team

30+ researchers

Project Overview



3 Exascale Computing Project

Co-design Motifs
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General Interpolation

High-Order Software Ecosystem

High-order Meshes Unstructured AMR Tensor contractions

Scalable matrix-free solvers High-Order Operator Format

PETSc

More info at: http://ceed.exascaleproject.org/fe

High-Order Visualization

Performance portability

OCCA

www.libocca.org

x86Xeon 
Phi

AMD 
GPU

NVIDIA 
GPU

OpenCL

NVIDIA 
CUDA Threads

OCCA API

OCCA is an open-source library that facilitates programming in an environment 
containing different types of devices. We abstract devices and let the user pick at run-
time, for example: CPUs, GPUs, Intel’s Xeon Phi, FPGAs.

Features include:

• JIT compilation for kernels

• Single kernel language for all 
backends (OKL)

• Works with MPI

• API in multiple languages

• MIT License

• Extensible backend API, allowing 
for future features. For example, 
we support unified memory in 
CUDA and mapped memory in 
OpenCL.
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CEED Software Products
Crosscutting Technologies

Main deliverable: all CEED software freely available on GitHub at https://github.com/CEED
New releases: mfem-3.3, gslib, Laghos and NekCEM ceedling, …

CEED’s library model enables ECP apps to easily take 
advantage of the new discretization technologies

CEED’s proxies and general purpose libs 
target ECP vendors, STs, broader community

GSLIB

Holmes
PETSc



Applicable to variety of physics

Linear, quadratic and cubic finite element 
spaces on curved meshes

High-order 
MHD

High-order 
rad. diff.

H(grad)
r�! H(curl)

r⇥�! H(div)
r·�! L2

“nodes” “zones”“edges” “faces”

High-order 
kinematics

High-order 
thermodynamics

Compressible flow (ALE, 8th order)

de Rham complex



Performance of assembled versus unassembled
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tensor-qstore b = 1

tensor-qstore b = 3

assembled b = 1

assembled b = 3

I Arithmetic intensity for Qp elements
I < 1

4 (assembled), ≈ 10 (unassembled), ≈ 5 to 10 (hardware)

I store Jacobian information at Gauss quadrature points, can use AD



Performance versatility: n1/2 and t1/2

I Suppose a linear scaling algorithm

I Let r(n) be the performance rate (e.g., DOF/second or GF/s) for local problem size
n = N/P

I Let rmax =maxn r(n) be the peak attainable performance
I n1/2 =min{n : r(n)≥ 1

2 rmax}
I Local problem sizes n < n1/2 will not yield acceptable efficiency

I t1/2 = 2n1/2/rmax

I Time to solution less than t1/2 is not feasible with acceptable efficiency



2017 HPGMG performance spectra
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BP1: Solve {Bu=f}, where {B} is the mass matrix.

BP2: Solve the vector system {Bui=fi} with {B} from BP1.

BP3: Solve {Au=f}, where {A} is the Poisson operator.

BP4: Solve the vector system {Aui=fi} with {A} from BP3.

• Range of polynomial orders: {p=1, 2,...,8}, at least.
• Cover range of sizes: from 1 element/MPI rank up to the memory limit.

• BP1 and BP2 are relevant for many hyperbolic substeps in transport
problems. BP3 and BP4 refect pressure, momentum, and difusion 
updates in fuid/thermal transport.

• Vector forms BP2 and BP4 reveal benefts of increased data reuse 
and of amortized communication overhead.

• Benchmark repo: https://github.com/CEED/benchmarks 

CEED-MS6
CEED Bake-Of Problems

BP terminology: T- 
and E-vectors of HO 

dofs
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(a) BP1 Nek5000
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(b) BP1 MFEM
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(c) BP1 deal.II

Figure: BP1 results of Nek5000 (left), MFEM (center), and deal.ii (right) on BG/Q with varying
polynomial order (p = 1, ...,16) with the number of quadrature points (q = p+2). The number cpu
cores P = 8,192.



BP1 on KNL: Nek5000 and MFEM
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Config: Nek5000 linux (1 node, 32 tasks/node), intel, bp1, PA
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Nek5000 n1/2 = 15k , t1/2 = 150µs
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Config: MFEM linux (1 node, 32 tasks/node), intel, bp1_v1, PA

p=1, q=p+2
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6000 iter/s

MFEM n1/2 = 10k , t1/2 = 400µs

I BG/Q has similar performance
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Lightweight Performance Portability
Crosscutting Technologies

CEED/OCCA is an open-source library that provides an unifed API for programming diferent types of 
devices, including CPUs, GPUs, Intel’s Xeon Phi, FPGAs.

OCCA

www.libocca.org

x86Xeon 
Phi

AMD 
GPU

NVIDIA 
GPU

OpenCL

NVIDIA 
CUDA Threads

OCCA API

OCCA is an open-source library that facilitates programming in an environment 
containing diferent types of devices. We abstract devices and let the user pick at run-
time, for example: CPUs, GPUs, Intel’s Xeon Phi, FPGAs.

Features include:

• JIT compilation for kernels

• Single kernel language for all 
backends (OKL)

• Works with MPI

• API in multiple languages

• MIT License

• Extensible backend API, allowing 
for future features. For example, 
we support unified memory in 
CUDA and mapped memory in 
OpenCL.

Features:
• Supported on many languages, such as

C++, C, and Fortran
• JIT compilation for kernels
• Single kernel language for all backends (OKL)
• Currently supports Serial, OpenMP, CUDA, 

and OpenCL backends. Works with MPI
• MIT License, http://www.libocca.org
• Extensible backend API, allowing for future 

features. For example, support for unifed memory 
in CUDA and mapped memory in OpenCL



OCCA performance on Summit (V100)
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Figure: BK1 and BK3 V100 performance: TFLOPS versus problem size n for different polynomial
orders, N. Operating on E-vectors (does not include element restriction E ,E T )
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• Matrix-free basis evaluation needs efcient 
tensor contractions, e.g.,

 
• CEED/MAGMA designed batched methods to split 

the computation in many small high-intensity GEMMs,
grouped together (batched) for efcient execution:
 

      Batch_{ Ci3 = AT Bi3, for range of i3 }

• Developed techniques needed for autotuning, code 
inlining, code generation (reshapes, etc.), algorithmic 
variants for diferent architectures.

• Achieve 90+% of theoretically derived peaks.
• Signifcantly outperform vendor libraries.
• Released through MAGMA.

Batched DGEMMs on GPU 
(P100, 100K )

Batched Computing Technology

i1,i2,i3C =
k,i1A k,i2,i3B

k

å

Crosscutting Technologies

Batched DGEMMs on ARM 
(Tegra X1 : 4-core Cortex A57)



MPICH CH4: lightweight device layer

I CH4: faster offload, better fast path/inlining/IPO
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libCEED: Code for Efficient Extensible Discretization

I BSD-2 license, C library with Fortran interface

I Releases: v0.1 (January), v0.2 (March), v0.3 (imminent)

I Purely algebraic interface
I Extensible backends

I CPU: reference, vectorized
I OCCA (just-in-time compilation): CPU, OpenMP, OpenCL, CUDA
I MAGMA

I Platform for collaboration with vendors

I Minimal assumptions about execution environment, parallel decomposition
I Primary target: high order finite element methods

I H1,H(div),H(curl)
I also of interest to spectral difference, etc.
I Exploit tensor product structure when possible



T-vector L-vector E-vector Q-vector

global domain
all (shared) dofs

sub-domains
device (local) dofs

elements
element dofs

quadrature
point values

Element operations (dense)
libCEED Operator

Global problem



Quadrature Function

vT F(u)∼
∫

Ω
v · f0(u,∇u)+∇v : f1(u,∇u) vT Jw ∼

∫
Ω

[
v

∇v

]T [
f0,0 f0,1
f1,0 f1,1

][
w

∇w

]
ue = BEeu ∇ue =

∂X
∂x

B∇Eeu

Jw = ∑
e

E T
e

[
B

B∇

]T
[

I (
∂X
∂x

)T

]
Wq

[
f0,0 f0,1
f1,0 f1,1

][I (
∂X
∂x

)]
︸ ︷︷ ︸

coefficients at quadrature points

[
B

B∇

]
Eew

I B and B∇ are tensor contractions – independent of element geometry

I Choice of how to order and represent gathers E and scatters E T

I Who computes the metric terms and other coefficients?

I Similar for Neumann/Robin and nonlinear boundary conditions



Quadrature Functions

I Multiple inputs and outputs

I Independent operations at each of Q quadrature points

I Ordering and number of elements not specified

int L2residual(void *ctx, CeedInt Q,
const CeedScalar *const in[],
CeedScalar *const out[]) {

const CeedScalar *u = in[0], *rho = in[1], *target = in[2];
CeedScalar *v = out[0];
for (CeedInt i=0; i<Q; i++)

v[i] = rho[i] * (u[i] - target[i]);
return 0;

}



Element restriction Ee

I Conforming homogeneous mesh: boolean matrix with homogeneous block size

I Non-conforming mesh: anchored rows have linear combination

I Nek5000-style E-vector: indexed identity

I libCEED backends are allowed to reorder, compress, etc.

I May be applied all at once or in batches



libCEED Operator

A = PT E T BDBE︸ ︷︷ ︸
CeedOperator

P

I element restriction E , basis B, quadrature function D
CeedOperatorCreate(ceed, qf_L2residual, &op);
CeedOperatorSetField(op, "u", E, Basis, CEED_VECTOR_ACTIVE);
CeedOperatorSetField(op, "rho", CEED_RESTRICTION_IDENTITY,

CEED_BASIS_COLOCATED, rho);
CeedOperatorSetField(op, "target", CEED_RESTRICTION_IDENTITY,

CEED_BASIS_COLOCATED, target);
CeedOperatorSetField(op, "v", E, Basis, CEED_VECTOR_ACTIVE);



Vectorization techniques

I Vectorize within a single high-order element
I Minimal working set (as small as one element)
I Specialized implementation for different degree/# quadrature points
I Hard to avoid cross-lane operations at modest degree
I Nek5000

I Vectorize across elements in batches [i,j,k,e]
I Working set has at least vector length number of elements (e.g., 8)
I Generic implementation is easy to optimize; no cross-lane operations
I HPGMG-FE, Deal.II (Kronbichler and Kormann), MFEM (new)



MFEM vectorization performance
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(a) Cetus internal vectorization
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Figure: Internal versus external element vectorization for BP1.



HPGMG: a benchmark for supercomputers

I https://hpgmg.org
I Mark Adams, Sam Williams (finite-volume), Jed (finite-element), John Shalf, Brian Van

Straalen, Erich Strohmeier, Rich Vuduc

I Annual BoFs at Supercomputing since 2014

I Implementations

Finite Volume memory bandwidth intensive, simple data dependencies, 4th order
Finite Element compute- and cache-intensive, vectorizes, overlapping writes

I Full multigrid, well-defined, scale-free problem

I Matrix-free operators, Chebyshev smoothers

https://hpgmg.org


Full Multigrid (FMG): Prototypical Fast Algorithm
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H
h Ih

H

I start with coarse grid
I truncation error within one cycle
I about five work units for many problems
I no “fat” left to trim – robust to gaming
I distributed memory – restrict active process set using Z-order

I O(log2 N) parallel complexity stresses network
I scale-free specification

I no mathematical reward for decomposition granularity
I don’t have to adjudicate “subdomain”



HPGMG-FE on Edison, SuperMUC, Titan

Titan >200ms
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Outlook

I libCEED is interested in contributors and friendly users

I GPU performance optimizations in progress
I Cache versus vectorization tradeoffs

I Backends should automatically choose internal versus external vectorization
I Choice depends on architecture, element size, number of fields

I Throughput versus latency optimizations

I Even/odd performance optimization

I Incorporate algorithmic differentiation

I Developing exchange/storage interfaces for high-order fields

I Many other activities to improve high order ecosystem


