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ACME 2014 (now E3SM)

only one objective!



“No DOE facility through 2020 will run ACME faster than Edison” – 2013

Atmosphere Performance
• Full EAM model, v1 physics
• 28km,72L, 40 tracers 
• Only with sufficient work per 

node can KNL outperform  
Edison (Xeon Ivy Bridge)

• Skylake and GPU (V100) 
Projections based on 
benchmarked dycore single 
node performance



Latency versus Throughput

Latency

Throughput

Adapted from Kronbichler and Ljungkvist (2019)



Fuhrer at al, 2018
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Fuhrer at al, 2018: Work-Time spectrum
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Fuhrer at al, 2018: Work-Time spectrum
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MPI_Allreduce performance, c/o Paul Fischer



Latency hasn’t improved much in 15 years
Year Latency (µs) 1/Bandwidth (µs/word) Machine

1986 5960 64 Intel iPSC-1 (286)
1988 938 2.8 Intel iPSC-2/ (386)
1990 80 2.8 Intel iPSC-i860
1991 60 0.8 Intel Delta
1992 50 0.15 Intel Paragon
1995 60 0.27 IBM SP2 (BU96)
1996 30 0.02 ASCI Red 333
1999 20 0.04 Cray T3E/450
2005 4 0.026 BGL/ANL
2008 3.5 0.022 BGP/ANL
2011 2.5 0.002 Cray XE6 (KTH)
2012 3.8 0.0045 BGQ/ANL
2015 2.2 0.0015 Cray XK7

Measured machine-dependent parameters from Fischer, Heisey, Min (2015)



Fuhrer at al, 2018: Work-Time spectrum
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What won’t save us?

Time = Latency +
Data volume
bandwidth

+
Work

Compute rate

I s-step methods (high overhead in strong scaling regime)

I Adaptivity (doesn’t reduce latency)

I Reduced precision (doesn’t reduce latency)
I Parallel-in-time integrators

I Poor efficiency
I Lack of stable coarse integrator
I Slow convergence with positive Lyapunov exponent



Algorithmic themes

I Do more work each time you pay for latency
I Communicate
I GPU kernel launch
I #pragma omp barrier, etc.

I Combine operations via implicitness
I Only possible with very fast iterative convergence!

I Control time-splitting errors



Runge-Kutta methods

u̇ = F(u)y1
...

ys


︸ ︷︷ ︸

Y

= un + h

a11 · · · a1s
...

. . .
...

as1 · · · ass


︸ ︷︷ ︸

A

F

y1
...

ys


un+1 = un + hbT F(Y )

I General framework for one-step methods

I Diagonally implicit: A lower triangular, stage order 1 (or 2 with explicit first stage)

I Singly diagonally implicit: all Aii equal, reuse solver setup, stage order 1

I If A is a general full matrix, all stages are coupled, “implicit RK”



Method of Butcher (1976) and Bickart (1977)

I Newton linearize Runge-Kutta system at u∗

Y = un + hAF(Y )
[
Is ⊗ In + hA⊗ J(u∗)

]
δY = RHS

I Solve linear system with tensor product operator

Ĝ = S⊗ In + Is ⊗ J

where S = (hA)−1 is s× s dense, J = −∂F(u)/∂u sparse

I SDC (2000) is Gauss-Seidel with low-order corrector
I Butcher/Bickart method: diagonalize S = VΛV−1

I Λ⊗ In + Is ⊗ J
I s decoupled solves
I Complex eigenvalues (overhead for real problem)



Eigenbasis ill conditioning A = VΛV−1



Why implicit is silly for waves

I Implicit methods require an implicit solve in each stage.

I Time step size proportional to CFL for accuracy reasons.
I Methods higher than first order are not unconditionally strong stability preserving

(SSP; Spijker 1983).
I Empirically, ceff ≤ 2, Ketcheson, Macdonald, Gottlieb (2008) and others
I Downwind methods offer to bypass, but so far not practical

I Time step size chosen for stability
I Increase order if more accuracy needed
I Large errors from spatial discretization, modest accuracy

I My goal: need less data motion per stage
I Better accuracy, symplecticity nice bonus only
I Cannot sell method without efficiency



Implicit Runge-Kutta for advection

Table: Total number of iterations (communications or accesses of J) to solve linear advection to
t = 1 on a 1024-point grid using point-block Jacobi preconditioning of implicit Runge-Kutta matrix.
The relative algebraic solver tolerance is 10−8.

Method order nsteps Krylov its. (Average)

Gauss 1 2 1024 3627 (3.5)
Gauss 2 4 512 2560 (5)
Gauss 4 8 256 1735 (6.8)
Gauss 8 16 128 1442 (11.2)

I Naive centered-difference discretization

I Leapfrog requires 1024 iterations at CFL=1

I This is A-stable (can handle dissipation)



Diagonalization revisited

(I ⊗ I −hA⊗L)Y = (1⊗ I)un (1)

un+1 = un + h(bT ⊗L)Y (2)

I eigendecomposition A = VΛV−1

(V ⊗ I)(I ⊗ I −hΛ⊗L)(V−1 ⊗ I)Y = (1⊗ I)un.

I Find diagonal W such that W−11 = V−11
I Commute diagonal matrices

(I ⊗ I −hΛ⊗L)(WV−1 ⊗ I)Y︸ ︷︷ ︸
Z

= (1⊗ I)un.

I Using b̃T = bT VW−1, we have the completion formula

un+1 = un + h(b̃T ⊗L)Z .

I Λ, b̃ is new diagonal Butcher table



REXI: Rational approximation of exponential

u(t) = eLtu(0)

I Haut, Babb, Martinsson, Wingate; Schreiber and Loft

(α ⊗ I + hI ⊗L)Y = (1⊗ I)un

un+1 = (β
T ⊗ I)Y .

I α is complex-valued diagonal, β is complex

I Constructs rational approximations of Gaussian basis functions, target (real part of) eit

I REXI is a Runge-Kutta method: can convert via “modified Shu-Osher form”
I Developed for SSP (strong stability preserving) methods
I Ferracina, Spijker (2005), Higueras (2005)
I Yields diagonal Butcher table A = −α−1,b = −α−2β



Abscissa for RK and REXI methods
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KiD: accuracy of time integrator
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I Solution completely wrong for ∆t > 30s, but production time steps are minutes



Slows convergence of global model

[Wan et al. 2015]



Calibration (c/o Caldwell)

I Parameters calibrated for systematic discretization error



Parameter tuning

With four parameters I can fit an elephant, and with five I can make him wiggle his
trunk.
— John von Neumann

I Over-fitting is a pathology

I Good subgrid models do not require (much) re-tuning parameters when ∆t or ∆x
change

I Experimenting with new discretizations requires expensive, ad-hoc parameter
re-calibration.



Are we solving the right problem?

I CESM Large Ensmeble Project (Kay et al., 2015)

I 30-member ensemble

I Identical initial conditions except for 10−14K perturbation in initial temperature

I CESM(CAM5) at ∼ 1◦ resolution



Cliff Mass projected warming in the PNW



Cliff Mass projected warming in the PNW



Cliff Mass projected warming in the PNW



Fig. 4. Global maps of historical (1979–2012) boreal winter (DJF) surface air temperature trends for each 
of the 30 individual CESM-LE members, the CESM-LE ensemble mean (denoted EM), and observations 
(denoted OBS based on GISTEMP; Hansen et al. 2010).

AUGUST 2015AMERICAN METEOROLOGICAL SOCIETY | 1341

Fig. 5. Global maps of near-future (2013–46) boreal winter (DJF) surface air temperature trends for each 
of the 30 individual CESM-LE members and the CESM-LE ensemble mean (denoted EM).
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Outlook

I Latency is a killer for high resolution. Needs to be confronted directly.

I Fascinating applied math/CS questions

I High inertia to address, especially when recalibration needed

I Need explicit support for career paths in methods development

I Thanks to DOE ASCR, BER, and ECP


